Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2018

Energy

Discipline
Institution
Publication

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Solar Parking Lot Analysis: Smart Investment Or Waste Of Capital, Jared J. Davis Dec 2018

Solar Parking Lot Analysis: Smart Investment Or Waste Of Capital, Jared J. Davis

Construction Management

In the last couple decades solar panels have been developed into a sustainable and effective method for harnessing clean energy. Today, solar panels have been engineered into solar roadways. Solar roadways are structurally engineered solar panels which can be installed in the Earth, driven on, and can replace the need for traditional asphalt roads. These solar roadways also include built in LEDs which mimic road lines and light up wildlife crossing the road, making these road panels a very safe alternative to traditional asphalt roads. This senior project is an analysis of solar roadways and their capabilities when applied to …


Solar Parking Lot Analysis: Smart Investment Or Waste Of Capital, Jared James Davis Dec 2018

Solar Parking Lot Analysis: Smart Investment Or Waste Of Capital, Jared James Davis

Construction Management

In the last couple decades solar panels have been developed into a sustainable and effective method for harnessing clean energy. Today, solar panels have been engineered into solar roadways. Solar roadways are structurally engineered solar panels which can be installed in the Earth, driven on, and can replace the need for traditional asphalt roads. These solar roadways also include built in LEDs which mimic road lines and light up wildlife crossing the road, making these road panels a very safe alternative to traditional asphalt roads. This senior project is an analysis of solar roadways and their capabilities when applied to …


Design Of Wind Turbine Tower Height And Blade Length: An Optimization Approach, Ryan Wass Sep 2018

Design Of Wind Turbine Tower Height And Blade Length: An Optimization Approach, Ryan Wass

Mechanical Engineering Undergraduate Honors Theses

The wind industry is a fast growing market and is quickly becoming competitive with traditional non-renewable energy resources. As with any developing industry, research must continually be redefined as more complex understandings of design variables are learned. Optimization studies are common ways to quickly refine design variable selections. Historical wind turbine data shows that the tower hub height to rotor diameter ratio scales almost linearly. However there is no specific rule that dictates the optimum hub height for a given diameter. This study addresses this question by using an Excel based optimization program to determine the height to diameter ratio …


Design Day Analysis - Forecasting Extreme Daily Natural Gas Demand, David Joseph Kaftan Jul 2018

Design Day Analysis - Forecasting Extreme Daily Natural Gas Demand, David Joseph Kaftan

Master's Theses (2009 -)

This work provides a framework for Design Day analysis. First, we estimate the temperature conditions which are expected to be colder than all but one day in N years. This temperature is known as the Design Day condition. Then, we forecast an upper bound on natural gas demand when temperature is at the Design Day condition. Natural gas distribution companies (LDCs) need to meet demand during extreme cold days. Just as bridge builders design for a nominal load, natural gas distribution companies need to design for a nominal temperature. This nominal temperature is the Design Day condition. The Design Day …


Applications Of Latent Heat Storage Using Phase Change Materials, Daniel Giroux Jun 2018

Applications Of Latent Heat Storage Using Phase Change Materials, Daniel Giroux

Honors Theses

Thermal Storage Systems are gaining more attention in recent years with the increased emphasis on more renewable energy sources. Energy storage is necessary whenever there is greater amounts of energy being produced than is required. Various improvements to the conventional heat storage system can be made by integrating latent heat storage into the conventional heat storage system. Latent heat storage can be utilized for thermal storage applications by using phase change materials, materials that will undergo a change in their physical state in the temperature range desired for heat storage.

Analysis was conducted on four different waxes considering the waxes …


Morphological And Energy Transport Optimization Of Spectrally-Selective Solar Absorber Coatings At Mesoscale, Dale Karas May 2018

Morphological And Energy Transport Optimization Of Spectrally-Selective Solar Absorber Coatings At Mesoscale, Dale Karas

UNLV Theses, Dissertations, Professional Papers, and Capstones

A special class of cuprous-based inorganic oxide materials, synthesized as nanoparticles via hydrothermal and co-precipitation methods, are portable to spectrally-selective absorber coatings with high solar-thermal energy conversion efficiency. Operating reliably at elevated temperatures when used in tandem with solar concentrators, these materials enable cost-competitive solar energy conversion technology that can be incorporated with thermal energy storage systems, supporting the viability of novel renewable power generation; notably, optimizing absorptive performance while mitigating thermal losses through re-radiated waste heat motivates sustainable energy production particular to desert climates, where water conservation and ecological sensitivity needs are paramount.

This work targets the chemical synthesis …


Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck May 2018

Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck

Senior Theses

The field of thermoelectrics has many applications, and more are found in everyday systems. From its current studies, it is apparent that improving the figure of merit zT (which defines a good thermoelectric material) is important in the effectiveness of power generation. Another important part of thermoelectrics is the duality of these devices. They can both move heat and generate power, depending on their role in the system. In this thesis research, a process was made to test these thermoelectric relationships for a few Peltier devices in order to understand their efficiencies and what systems they can be applied to.


Single-Stage, Venturi-Driven Desalination System, Brandon Proetto May 2018

Single-Stage, Venturi-Driven Desalination System, Brandon Proetto

Mechanical & Aerospace Engineering Theses & Dissertations

Water demand is increasing at a rapid pace due to population increase, industrial expansion, and agricultural development. The use of desalination technology to meet the high water demands has increased global online desalination capacity from 47 million m^3/d in 2007 to 92.5 million m^3/d as of June 2017 [49]. Membrane and thermal processes are the two mainstream desalination categories used worldwide for desalination plants. Reverse Osmosis (RO) is the most widely used membrane process and it has become the dominant technology for building desalination plants over recent decades. Thermal distillation, however, has become less and less competitive due to its …


Lithium And The Foreseeable Future, Paolo Vargas May 2018

Lithium And The Foreseeable Future, Paolo Vargas

Mechanical Engineering Undergraduate Honors Theses

This paper aims to clarify the uncertainties regarding worldwide lithium resource availability in the years to come. Previous studies made on the subject are presented with some ambiguity and this work intends to fill the gaps. The information and data presented throughout this script with respect to global lithium resources and reserves are mostly based on data released by the United States Geological Survey (USGS). Lithium resource availability in the future is a point of paramount significance primarily for the automotive, portable electronics, and the power generation industry. Since, a change of supply would ultimately affect the price of lithium, …


Resiliency Vs Reality, Ainsley E. Henderson May 2018

Resiliency Vs Reality, Ainsley E. Henderson

Construction Management

This study analyzes the resilient design and construction features desired by Great Northern Services (GNS) for the design and construction of a new housing division in the City of Weed, California. This was compared to what the Cal Poly interdisciplinary student design teams were able to offer, by providing different design options. The study begins by showcasing the Boles fire and the connections that Cal Poly had made to support the City of Weed. The support was made through design and collaboration with Great Northern Services to create affordable housing. The study then discusses the needs that GNS wanted to …


Modeling The Interdependencies Of Energy And Water In New Mexico: Historic Drivers, Hydrologic Impacts, And Energy Requirements, Catherine M. Zemlick 5774203 Apr 2018

Modeling The Interdependencies Of Energy And Water In New Mexico: Historic Drivers, Hydrologic Impacts, And Energy Requirements, Catherine M. Zemlick 5774203

Civil Engineering ETDs

There is increasing need to understand the interdependencies between energy resource development and water resources, particularly in arid regions with vast energy reserves like New Mexico. The state has a long history of energy resource development, including both uranium and fossil fuels. These activities have and continue to impact scarce water resources. There exist gaps in knowledge regarding the drivers of historic uranium mining and the uncertainties inherent in past estimates of groundwater impacts because of mining activity and in current understanding of the energy required to manage water in the oil and gas industry. Although uranium has not been …


Simulation Of The Inertia Friction Welding Process Using A Subscale Specimen And A Friction Stir Welder, Ty Samual Dansie Apr 2018

Simulation Of The Inertia Friction Welding Process Using A Subscale Specimen And A Friction Stir Welder, Ty Samual Dansie

Theses and Dissertations

This study develops a method to simulate a full-scale inertia friction weld with a sub-scale specimen and modifies a direct drive friction stir welder to perform the welding process. A torque meter is fabricated for the FSW machine to measure weld torque. Machine controls are modified to enable a force control during the IFW process. An equation is created to measure weld upset due to deflection of the FSW machine. Data obtained from a full-scale inertia friction weld are altered to account for the geometrical differences between the sub-scale and full-scale specimens. The IFW are simulated with the sub-scale specimen …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


A Quantification Analysis On Potential Use Of Recuperated Regenerative Braking Energy From Nyct Subways Into Charging Electric Buses, Ahmed S. Rahman Jan 2018

A Quantification Analysis On Potential Use Of Recuperated Regenerative Braking Energy From Nyct Subways Into Charging Electric Buses, Ahmed S. Rahman

Dissertations and Theses

The New York Metropolitan Transportation Authority (MTA) is one of the biggest consumers of electricity in east coast of the United States. According to a report published by Dayton T. Brown in 2013, MTA consumes approximately 2150 GWh electrical energy per year for traction power, where the New York City Transit (NYCT) alone is a consumer of about 80% of the total annual MTA energy consumption. This continuous high demand for electricity from a single organization opens research opportunities to search for alternative ways to reduce the needs. NYCT Subways has an existing total rolling stock of 6,418 train cars …