Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Molecular Dynamics (Md) Study On The Electrochemical Properties Of Electrolytes In Lithium-Ion Battery (Lib) Applications, Negin Salami Aug 2014

Molecular Dynamics (Md) Study On The Electrochemical Properties Of Electrolytes In Lithium-Ion Battery (Lib) Applications, Negin Salami

Theses and Dissertations

While the high energy density and the power along with longer cycle life and less requirements of maintenance distinguish the rechargeable lithium-ion batteries (LIBs) from other energy storage devices, development of an electrolyte of LIBs with optimized properties still constitutes a challenge towards next-generation LIB systems with robust electrochemical performance. The electrolytes serve as the medium to provide ionic conduction path between the electrodes as their basic function. Conductivity of the solutions are mainly affected by their transport properties and the electrolyte electrode/separator interfacial phenomena. Although many contributions on thermodynamic properties of the electrolytes consist of alkyl carbonates mixed with …


The Development And Biocompatibility Of Low Temperature Co-Fired Ceramic (Ltcc) For Microfluidic And Biosensor Applications, Jin Luo Jan 2014

The Development And Biocompatibility Of Low Temperature Co-Fired Ceramic (Ltcc) For Microfluidic And Biosensor Applications, Jin Luo

Theses and Dissertations--Chemical and Materials Engineering

Low temperature co-fired ceramic (LTCC) electronic packaging materials are applied for their electrical and mechanical properties, high reliability, chemical stability and ease of fabrication. Three dimensional features can also be prepared allowing integration of microfluidic channels and cavities inside LTCC modules. Mechanical, optical, electrical, microfluidic functions have been realized in single LTCC modules. For these reasons LTCC is attractive for biomedical microfluidics and Lab-on-a-Chip systems. However, commercial LTCC systems, optimized for microelectrics applications, have unknown cytocompatibility, and are not compatible with common surface functionalization chemistries.

The first goal of this work is to develop biocompatible LTCC materials for biomedical applications. …