Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Gravure Printability Of Indium Tin Oxide Nanoparticles On Glass And Pet Films For Applications In Printed Electronics, Dania Awni Alsaid Dec 2012

Gravure Printability Of Indium Tin Oxide Nanoparticles On Glass And Pet Films For Applications In Printed Electronics, Dania Awni Alsaid

Dissertations

The advancements in the field of solution processable electro-active materials and their ability to be printed on different substrates have led to the evolution of printed electronics. In this field, electronic components are manufactured with conventional printing methods. Transparent electrodes made from indium tin oxide (ITO) are part of many electronic devices. Currently in industry, highly conductive ITO films are prepared by sputtering. The sputtering and then patterning of ITO films is a sophisticated process that consumes high energy, generates waste and produces films with limited flexibility. Therefore, there is a need to investigate processing methods for creating ITO films …


Inkjet Printability Of Electronic Materials Important To The Manufacture Of Fully Printed Otfts, Sooman Lim Aug 2012

Inkjet Printability Of Electronic Materials Important To The Manufacture Of Fully Printed Otfts, Sooman Lim

Dissertations

In this study, the inkjet printability of materials important to fabricating OTFTs was researched. In order to understand the jetting evolution of inkjet printed inks, simulations were performed with a nano copper and nano particle silver ink. To predict the inkjettability of the nano copper ink, Z and Oh numbers at different temperatures were determined. The results from the simulation studies were compared to experimental results obtained using a Dimatix inkjet printer. For the semiconductor ink, the inkjet printability of two organic semiconductors, P2TDC17FT4 (poly[(3,7-diheptadecylthieno[3,2-b]thieno[2',3':4,5]thieno[2,3-d]thiophene-2,6-diyl)[2,2'-bithiophene]-5,5'-diyl] dissolved in 1,2-dichlorobenzene and P3HT (poly-3 hexylthiophene) were compared to determine the relationship between drop …


Investigation Of The Fracture Phenomena During The Milling Process Of Inorganic Particulates And Brittle Fracture Of Polymer Composites Using Fractal Theory, Zheng Qian May 2012

Investigation Of The Fracture Phenomena During The Milling Process Of Inorganic Particulates And Brittle Fracture Of Polymer Composites Using Fractal Theory, Zheng Qian

Dissertations

This dissertation investigates the applicability and usefulness of applying Fractal mathematics and to the fracture of brittle particulates in Fluid Energy Mill devices, and in particular quantifying the resulting power law particle size distributions, examining the Surface Fractal Dimension of milled particulates, and relating the Izod Impact Strength values of composites of polypropylene and Calcium carbonate particulates which are large un-milled, small milled, as well as small and produced by the simultaneous milling and coating with nano-silica to the Surface Fractal Dimension of the impact fracture surfaces.

First, the dissertation examines the behavior of un-coated and micron-sized wax pre-coated particulates …


Desalination Of Brine And Produced Water By Membrane Distillation At Lower As Well As Higher Temperatures And Pressures, Dhananjay Singh May 2012

Desalination Of Brine And Produced Water By Membrane Distillation At Lower As Well As Higher Temperatures And Pressures, Dhananjay Singh

Dissertations

Direct contact membrane distillation (DCMD)-based desalination process is a thermally- driven separation process where a hydrophobic microporous membrane separates a hot brine feed and a cold distillate which condenses the water vapor from the hot brine passing through the membrane pores. So far, DCMD has been explored for hot brines and other aqueous solutions below 100oC. For feed solutions above 100oC, DCMD has an extra advantage over other conventional separation processes like reverse osmosis (RO) which requires cooling of the feed solution costing additional energy; further, RO can not utilize the heat available in the feed solution. Produced water obtained …


Single And Multiphase Mixing In Partially Filled Stirred Vessels, Shilan Motamedvaziri Jan 2012

Single And Multiphase Mixing In Partially Filled Stirred Vessels, Shilan Motamedvaziri

Dissertations

In many industrial applications, mixing vessels have a liquid height-to-tank diameter ratio, H/T, equal to, or larger than 1. However, there are many instances where this ratio is lower than 1, as in all those cases in which the vessel is either emptied or filled. Even when H/T<1, sufficient agitation must still be provided in order to attain the desired process objectives. When the impeller submergence is reduced as a result of lowering the liquid level, the fluid dynamics of even a single-phase stirred liquid can become quite complex, with different regimes possibly existing depending on the geometric characteristics of the system (such as impeller clearance, liquid height, or liquid submergence above the impeller). The objectives of this work were to study in detail the hydrodynamic changes that occur when H/T is decreased, and to determine the minimum liquid levels and the critical impeller submergence for different impeller off-bottom distances, impeller diameters and agitation speeds where adequate mixing process can still be achieved, both in a single liquid phase and in solid-liquid suspensions.

Flat-bottomed, baffled vessels (5L, 12L, 20L and 170L) equipped with a single disk turbine (DT) of four different sizes placed at five different impeller off-bottom clearances were used here to study the system's hydrodynamics and related mixing phenomena. A number of experimental tools were used to analyze the systems under investigation, including: …


Hot-Melt Mixing Of Partially Miscible Active Pharmaceutical Ingredient-Polymer Mixtures, Min Yang Jan 2012

Hot-Melt Mixing Of Partially Miscible Active Pharmaceutical Ingredient-Polymer Mixtures, Min Yang

Dissertations

Solid dispersion/solution processes for producing pharmaceutical oral dosages such as hot-met extrusion (HME) have received increasing attention by industry and academe because they can enhance drugs’ solubility and even bioavailability to a great extent by converting drugs from crystalline to amorphous form. HME can be carried out at two process temperature regimes: one where Tprocess > Tm of the drug and the Tg of the polymer (or the Tm for the case of semi-crystalline polymers); the other at Tm > Tprocess > Tg (Tm for the case of semi-crystalline polymer). Processing below the drug’s …