Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Open Access Dissertations

Materials Science and Engineering

Applied sciences

2013

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Atomic Level Study Of Water-Gas Shift Catalysts Via Transmission Electron Microscopy And X-Ray Spectroscopy, Mehmed Cem Akatay Oct 2013

Atomic Level Study Of Water-Gas Shift Catalysts Via Transmission Electron Microscopy And X-Ray Spectroscopy, Mehmed Cem Akatay

Open Access Dissertations

Water-gas shift (WGS), CO + H2 O [Special characters omitted.] CO2 + H2 (ΔH° = -41 kJ mol -1 ), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2 O3 catalystsare employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism.

In this study, the structure of the supported …


Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco Oct 2013

Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco

Open Access Dissertations

Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m2 applied in very short periods (0.1 to 5 ms) can be …


Mechanisms Of Microstructure Formation Under The Influence Of Ultrasonic Vibrations, Milan Rakita Oct 2013

Mechanisms Of Microstructure Formation Under The Influence Of Ultrasonic Vibrations, Milan Rakita

Open Access Dissertations

Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found …


Dynamic Behavior Of Sandwich Beams With Internal Resonators, Bhisham Nar Narain Sharma Oct 2013

Dynamic Behavior Of Sandwich Beams With Internal Resonators, Bhisham Nar Narain Sharma

Open Access Dissertations

Dynamic behavior of sandwich beams with internal resonators was investigated. The effect of inserting spring-mass resonators into the sandwich core was theoretically analyzed and it was shown that a wave attenuation bandgap exists due to local resonance. Steady state experiments were used to demonstrate such an attenuation bandgap. Frequency response functions were obtained for a beam with resonators and without resonators. It was shown that insertion of resonators into the core causes a wave attenuation bandgap to open up. The experimental results were verified using finite element simulations. Further experiments were carried out by tuning the resonators at 12 Hz …


The Comparison Of Composite Aircraft Field Repair Method (Cafrm) With Traditional Aircraft Repair Technologies, Peng Hao Wang Oct 2013

The Comparison Of Composite Aircraft Field Repair Method (Cafrm) With Traditional Aircraft Repair Technologies, Peng Hao Wang

Open Access Dissertations

In the aviation industry, manufacturers made the transition from aluminum to composite materials for the majority of their primary structures over the last few decades. While the design and manufacturing techniques have consistently evolved, field repair methods were consistently overlooked. In this study, specimens fabricated using some of the common repair methods such as the autoclave repair method, and Double Vacuum Debulk (DVD) repair method were tested against the Composite Aircraft Field Repair Method (CAFRM) proposed by the researcher. Specimens were tested with microscopy, acid digestion, short beam shear, and mode I fracture tests. The researcher was able to determine …


Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller Oct 2013

Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller

Open Access Dissertations

Water is the second most common element in the universe and the most studied material on earth. Most of the studies concerning water are from the fields of chemistry and biology. Hence, the structure of water molecules and short range order and interactions are well characterized and understood. However, the collective arrangement of water molecules and the long range order are still missing. Understanding of this long range order in water is needed, as it is the key to many water activities.

To fill this gap, this study utilizes a new direct method for characterization of water in the vapor …


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …