Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Materials Engineering

Other Materials Science and Engineering

Solar

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Solar Cell Potential Induced Degradation Sensor, Luc Alexandre Tousignant Jun 2018

Solar Cell Potential Induced Degradation Sensor, Luc Alexandre Tousignant

Materials Engineering

It is important to maintain Photovoltaic (PV) cells and protect them from damage mechanisms like Potential Induced Degradation (PID), which can contribute to shorter lifespans and lower efficiencies. Current leakage through cell encapsulation can cause charge migration in PV cells that reduces the maximum quantum efficiency, which is the cause of PID. An experiment was setup to determine the feasibility of a non-silicon sensor able to produce similar leakage behavior to traditional PV cells under recorded humidity conditions. Thin sheet metals were encapsulated in EVA, a common PV encapsulant polymer, and mounted in aluminum framing. Three sensors, along with a …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …