Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 57

Full-Text Articles in Engineering

Manipulating Fiber Orientation For The Reduction Of Warpage In Carbon Fiber Composite Sandwich Panels, Landon Burnley, Gabrielle Correia Jul 2019

Manipulating Fiber Orientation For The Reduction Of Warpage In Carbon Fiber Composite Sandwich Panels, Landon Burnley, Gabrielle Correia

Materials Engineering

Safran Cabin (Santa Maria, CA), previously known as Zodiac Aerospace, designs and manufactures interior cabin components for private and commercial aircraft. Carbon fiber face sheets have recently been incorporated in their overhead luggage bin assemblies which utilize a composite sandwich panel design, in order to provide additional stiffness to the previous glass fiber sandwich panels. Since the introduction of carbon fiber in these luggage bin panels, Safran has experienced an increase in warpage during manufacturing. When inspected by quality control, the panels are tested mimicking how they are installed in aircraft. If the panels do not meet specifications, the warped ...


Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor Jun 2019

Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor

Materials Engineering

In petroleum processing, the flow of catalyst readily leads to erosion of piping in a fluid catalytic cracking unit. Advances in coating materials and processes necessitate a re-evaluation of current protection methods. Commercially available tungsten-carbide (WC) claddings and nanostructured WC-W CVD coatings were investigated as potential alternative erosion-resistant coatings. Erosion tests by solid particle impingement were conducted on 2 variations of claddings and 1 variation of WC-W coatings following ASTM standard G76. A36 steel coupons were used as reference samples. For statistical validation, 2-3 replications of the tests were performed for the claddings and WC-W coating. Testing was conducted using ...


A Study And Simulation Of Flux Induced Corrosion In Copper Tubing Used For The Distribution Of Potable Water, Daniel O. Benham Jun 2019

A Study And Simulation Of Flux Induced Corrosion In Copper Tubing Used For The Distribution Of Potable Water, Daniel O. Benham

Materials Engineering

Water side corrosion within copper plumbing can occur due to a wide variety of unwanted circumstances. Through the controlled immersion of six ¾” copper tubing samples with five utilizing a unique industry standard soldering flux, this investigation associates residual flux deposits with the initiation of pitting in copper. Water stagnation in a copper potable water distribution system, typically associated with an infrequently used faucet, is a condition highly prone to copper pitting. A test apparatus designed to produce a partially stagnant flow condition with scheduled electrolyte flushes every 3 days was developed and constructed to contain 6 test samples for ...


In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila Jun 2018

In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila

Materials Engineering

Scanning electron microscopy (SEM) video recording is used to characterize the solidification of small volumes of 99.999% pure gallium (Ga) and eutectic gallium-indium (eGaIn) under a high vacuum environment. Specimen are superheated to 55℃ using a hot plate, cast into spherical droplets, and cooled in situ by means of a Peltier cooling stage. Special attention is given to the preparation of the specimen prior to viewing because of gallium and its alloys’ nature to form an oxide layer when melted and air cooled. The oxide acts as a skin that inhibits the observation of microstructural features during solidification. Heated ...


Next Generation Protocol: Innovating A Resilient Future, Andrew Steven Rudnick, Jamie Cannady, Joe Decesaro, Juan A. Ortiz Salazar Jun 2018

Next Generation Protocol: Innovating A Resilient Future, Andrew Steven Rudnick, Jamie Cannady, Joe Decesaro, Juan A. Ortiz Salazar

Materials Engineering

Conventional practices do not account for product life beyond end-of-sale – these practices are not sustainable. We have developed an end-of-life protocol that includes a metric that we call the Recovery Rating. The objectives of this Next Generation Protocol, beyond supporting the United Nations’ Sustainable Development Goals, are to encourage the production of goods designed for recovery and to promote the collaboration between consumers, the public, and the private sector to recover goods at their end-of-life. The Recovery Rating that we propose evaluates and quantifies recovery potential of products. The Recovery Rating, which is normed against embodied energy from the Cambridge ...


Development Of Test Methods For Measuring Fiber Misalignment And Warping In Honeycomb-Core Composite Panels, Wyatt Taylor, Haripriya Nilakantan Jun 2018

Development Of Test Methods For Measuring Fiber Misalignment And Warping In Honeycomb-Core Composite Panels, Wyatt Taylor, Haripriya Nilakantan

Materials Engineering

Zodiac Aerospace manufactures honeycomb-core composite panels to be used in aircraft cabin interior components. During the manufacturing process, some panels become warped such that they cannot be used for their designated aircraft cabin components. As a result, these panels are scrapped because they cannot be recycled. About 44 to 90% of panels become warped during manufacturing. Warping is caused by many factors, including layer misalignment, processing parameters such as temperature and pressure gradients, and fiber misalignment in the prepregs. Currently, Zodiac does not have any data on the effect of fiber misalignment on panel warpage, so a testing protocol was ...


Phase Change Materials For Thermal Management Of Kennedy Library Study Rooms, Colin J. Empey Jun 2018

Phase Change Materials For Thermal Management Of Kennedy Library Study Rooms, Colin J. Empey

Materials Engineering

The overall purpose of this study was to find a phase change material (PCM) or a combination of PCMs as a thermal management solution for the fifth-floor study rooms in Kennedy Library. First and foremost, the PCM must take in heat to change phase. A PCM would be a better candidate the more heat it needs to change phase. To quantify this, the team utilized a DSC to find how much energy each candidate PCM required to change phase. Coconut oil, palm oil, and white chocolate were found to have the best ability to absorb heat. Secondly, the PCM should ...


Solar Cell Potential Induced Degradation Sensor, Luc Alexandre Tousignant Jun 2018

Solar Cell Potential Induced Degradation Sensor, Luc Alexandre Tousignant

Materials Engineering

It is important to maintain Photovoltaic (PV) cells and protect them from damage mechanisms like Potential Induced Degradation (PID), which can contribute to shorter lifespans and lower efficiencies. Current leakage through cell encapsulation can cause charge migration in PV cells that reduces the maximum quantum efficiency, which is the cause of PID. An experiment was setup to determine the feasibility of a non-silicon sensor able to produce similar leakage behavior to traditional PV cells under recorded humidity conditions. Thin sheet metals were encapsulated in EVA, a common PV encapsulant polymer, and mounted in aluminum framing. Three sensors, along with a ...


Characterization Of Slm Printed 316l Stainless Steel And Investigation Of Microlattice Geometry, Finley H. Marbury Jun 2017

Characterization Of Slm Printed 316l Stainless Steel And Investigation Of Microlattice Geometry, Finley H. Marbury

Materials Engineering

The goal of this project was firstly to characterize Cal Poly’s SLM printed 316L stainless steel. SEM analysis showed Cal Poly’s as-printed 316L material to have a cellular dendritic microstructure containing mostly austenite and a small amount of δ-ferrite. After being heat treated to eliminate warp, its yeild and ultimate tensile strength were on par with the literature, however higher modulus and lower elongation were observed. XRD analysis confirmed residual stresses in the material, and that grains are preferentially oriented in both heat treated and non heat treated samples. The amount of porosity in the material was found ...


Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang Jun 2017

Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang

Materials Engineering

Printing of conductive ink traditionally uses copper-based ink and was used on high temperature metal substrates due to the high curing and sintering temperature of copper. In this experiment, however, Metalon JS-B25P nano-silver conductive ink was printed using an Epson Stylus C88+ inkjet printer on polyethylene terephthalate (PET) based Novele printing media made for low temperature applications. With silver’s lower sintering temperature, the nano-silver particles in this ink are desired to be able to sinter at a low enough temperature to be used on the PET substrate. The printed ink traces were cured with a temperature-controlled hotplate at 100 ...


Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga Jun 2017

Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga

Materials Engineering

Microcracking has caused premature failure and reduction in properties in additively manufactured (AM) Hastelloy X. The purpose of this research is to meet or exceed the mechanical properties of wrought Hastelloy X by modifying the composition and build direction of Hastelloy X manufactured using Direct Metal Deposition (DMD). Tensile testing, scanning electron microscopy (SEM), and metallography were performed on the samples. ANOVA was used to analyze the dependence that the properties had on build direction and composition. The nominal composition wrought samples had a yield strength of 310.1 MPa and a 60.79% Elongation. Alloy P60-X18 in a horizontal ...


Mitigation Of Corrosion Under Insulation (Cui) Of Carbon Steel Of Different Insulating Materials: A Literature Review And Testing Analysis, Michael Alexander Lowes Jun 2017

Mitigation Of Corrosion Under Insulation (Cui) Of Carbon Steel Of Different Insulating Materials: A Literature Review And Testing Analysis, Michael Alexander Lowes

Materials Engineering

Equipment often found in refineries may be enveloped in insulation and weathering jackets to maintain internal processing temperatures. In many cases moisture from the environment will penetrate the weathering jacket and infiltrate the insulation, leaching corrosive ions to the surface of metal equipment, effectively creating a corrosion cell. The goal of this project is to investigate different insulating materials for their ability to inhibit corrosion under insulation (CUI). The inhibiting mechanism utilizes water ingress that leaches ions from the insulator to bond with the surface metal and create a passive layer, inhibiting any further corrosion. This study will follow ASTM ...


Invariant-Based Method For Improving Efficiency Of Mechanical Testing In Aerospace Certification Of Carbon Fiber-Epoxy Composites, Alyssa Rina Gruezo, Erika Gabrielle Hansen Jun 2017

Invariant-Based Method For Improving Efficiency Of Mechanical Testing In Aerospace Certification Of Carbon Fiber-Epoxy Composites, Alyssa Rina Gruezo, Erika Gabrielle Hansen

Materials Engineering

The current challenge with qualification of carbon fiber composites in the aerospace industry would be the low efficiency of testing hundreds of samples. The Trace Theory strives to streamline the qualification process by utilizing a material’s Trace to predict properties of composites using Excel programs and basis data. To test this theory, predicted properties from the program, QuickLam, were compared to experimental data. Unidirectional 0° (T1), unidirectional 90° (T2), quasi-isotropic (T3), and hard quasi-isotropic (T4) laminates were made using HexTowR carbon fiber and TC250 resin provided by TenCate Advanced Composites. Tensile and compression tests were done according to ASTM ...


Comparison Of Intrusive And Non-Intrusive Methods For Corrosion Monitoring Of Fuel Processing Systems, Armando Jacob Espinoza, Thomas Conner Field Jun 2017

Comparison Of Intrusive And Non-Intrusive Methods For Corrosion Monitoring Of Fuel Processing Systems, Armando Jacob Espinoza, Thomas Conner Field

Materials Engineering

This presentation contains an assessment of the best overall corrosion monitoring device, intrusive or non-intrusive, for use in the petrochemical industry. Corrosion in the petrochemical industry is a large issue because it causes a deterioration of pipe integrity in fuel processing systems. A reduction of pipe wall integrity due to corrosion could result in a leak or an explosion of fuel processing lines since those systems function at high pressures. The use of corrosion monitoring systems in the petrochemical industry helps to detect early signs of corrosion prior to failure so that proper maintenance can be performed to prevent catastrophe ...


Acoustic Management Of Library Fishbowls, Zachary J. Lilley Sep 2016

Acoustic Management Of Library Fishbowls, Zachary J. Lilley

Materials Engineering

The purpose of this project is to aid the Cal Poly Robert E. Kennedy library in modifying the “fishbowl” study spaces to more effectively maintain the desirable sound that is generated within the fishbowls while avoiding the entrance and exit of excess noise to and from the fishbowls. A collaboration between the Materials Engineering Department and the Architecture Department provided the combined expertise needed to design, test, and install a prototype acoustic treatment in fishbowl 216-R in consultation with the Cal Poly Library as the voice of the customer. The fishbowl’s undesirable acoustic properties can be attributed to the ...


Shear Strength Of Carbon Fiber/Epoxy Hinges Using The V-Notch Rail Shear Test, Calvin Noetzel Jun 2016

Shear Strength Of Carbon Fiber/Epoxy Hinges Using The V-Notch Rail Shear Test, Calvin Noetzel

Materials Engineering

The mechanical properties of carbon fiber reinforced polymer (CFRP) hinges produced by Common Fibers (Kent, Washington) are a new technology with uncharacterized mechanical properties. Currently, Common Fiber’s hinges are utilized in wallets, but in order to expand the application of the hinges to structural components, complete characterization of the mechanical properties of the hinges is necessary. To address this problem, hinges developed by Common Fibers were tested utilizing the V-Notch rail shear test, ASTM D7078, to determine the shear strength of the hinges. Two layups, [+45/-45/0]s and [0/+45/-45/0]s were produced by Common ...


Selection Of A Flexible Polymer To Protect Dry Carbon Fibers In A Cfrp Wallet Hinge, Evan Dowey, Matthew Johnson Jun 2016

Selection Of A Flexible Polymer To Protect Dry Carbon Fibers In A Cfrp Wallet Hinge, Evan Dowey, Matthew Johnson

Materials Engineering

Common Fibers, a company founded by Cal Poly alumni, produces carbon fiber wallets. The invention of their built-in fiber-matrix composite hinge reduces the need for extra complexity and added mass that is inherent with using standard metal hinges to join standard composite panels. Replacing the polyurethane tape on the wallet hinge allows for improved protection while maintaining flexibility and other performance properties is critical to the success of such a design. The most important material property in this project is the bond strength between carbon fiber and a variety of flexible resin candidates. The silicone and urethane based elastomer resins ...


Life Cycle Assessment Of Paper Versus Electronic Assignment Submission In Cal Poly's Materials Engineering, Patrick Mcdonnal Jun 2016

Life Cycle Assessment Of Paper Versus Electronic Assignment Submission In Cal Poly's Materials Engineering, Patrick Mcdonnal

Materials Engineering

Both hard and soft copy submission of assignments make an impact on the environment to produce the final product in terms of energy consumption and carbon emissions; an investigation was conducted as to which method is less environmentally impactful. Student disposition towards each assignment submission method was also investigated because it is associated with learning efficacy. A survey was conducted in Cal Poly’s Materials Engineering Department to determine the contributing components to the environmental impact of paper and electronic assignments, as well as the students’ disposition towards each of them. Contributing components are man-made products used by a student ...


Improving Surface Roughness Of Optically Telegraphed Composite Laminations, Michael Smith Jun 2016

Improving Surface Roughness Of Optically Telegraphed Composite Laminations, Michael Smith

Materials Engineering

In collaboration with Watson Furniture, this project seeks to identify the cause of surface roughness on composite panels processed into commercial furnishings. The surface roughness was examined and measured using an optical microscope, a scanning electron microscope (SEM), and a profilometer. The SEM and optical microscope provided qualitative data on the surface roughness as well as the film build of each layer. After an initial characterization of the manufactured samples provided by Watson Furniture, additional samples were fabricated for testing using different manufacturing processes than those used by Watson Furniture. These samples were constructed in-house using raw materials provided by ...


Predicting Flexural Strength Of Composite Honeycomb Core Sandwich Panels Using Mechanical Models Of Face Sheet Compressive Strength, Nicholas Bruffey, William Shiu Jun 2016

Predicting Flexural Strength Of Composite Honeycomb Core Sandwich Panels Using Mechanical Models Of Face Sheet Compressive Strength, Nicholas Bruffey, William Shiu

Materials Engineering

The design process at Zodiac Aerospace requires the ability to accurately predict the strength of a composite honeycomb core sandwich panel to adhere to strict FAA regulations. The most common failure mode in long beam composites is in compression. Following ASTM D7249 for a four-point bend test of a long beam flexural test, a mechanical model has been developed that relates the compressive strength of glass fiber face sheets to the flexural strength of the sandwich panel. Zodiac does not currently have data on the compressive strength of the face sheets, so testing was performed to find this property. Asymmetric ...


Comparison Study Of Tensile Strength , Ductility, And Fracture Mode Of H11, Arp 2000, And Mp35n Connecting Rod Bolts For Use In High Performance Racing Engines, Megan Mccabe, Samuel Randall Jun 2016

Comparison Study Of Tensile Strength , Ductility, And Fracture Mode Of H11, Arp 2000, And Mp35n Connecting Rod Bolts For Use In High Performance Racing Engines, Megan Mccabe, Samuel Randall

Materials Engineering

Oliver Racing Parts (ORP) has historically purchased connecting rod bolts made of high strength, high cost, nickel-cobalt alloy, MP35N, and a medium strength, low cost, proprietary tool steel called ARP 2000. ORP has recently acquired capabilities to manufacture their own bolts. To determine the quality of their product as it compares to their previous supplier, ORP produced three different types of ⅜” diameter bolts: one set of bolts made of MP35N, and two sets of H11 bolts, designated H11A and H11B for their respective processing. The H11, ARP 2000, and MP35N bolts were tensile tested using a custom designed test ...


Life Cycle Assessment And Comparison Of Magnesium Oxide Nanoparticles Prepared By Aqueous And Microwave Synthesis Methods, Jesse Cartland Jun 2016

Life Cycle Assessment And Comparison Of Magnesium Oxide Nanoparticles Prepared By Aqueous And Microwave Synthesis Methods, Jesse Cartland

Materials Engineering

Abstract: Magnesium oxide nanoparticles are being used increasingly as catalysts for organic synthesis, fuel oil additives, and CO2 adsorbents. There are many ways to produce magnesium oxide nanoparticles, but there is little information available regarding the environmental costs of production. As demand for environmentally friendly materials increases, it is important to understand environmental impact differences between various production methods. This study will compare the differences in embodied energy and global warming potential (GWP) between two synthesis methods: microwave combustion synthesis (microwave synthesis) and oxidation of magnesium hydroxide (aqueous synthesis). The resulting nanoparticles were characterized using scanning electron microscopy (SEM ...


Investigation Of Outlife Time On The Environmental Durability Of P2-Etched, Adhesively-Bonded Aluminum Alloys Using The Astm Wedge Test, Daniel Gross, Corey Sutton Jun 2016

Investigation Of Outlife Time On The Environmental Durability Of P2-Etched, Adhesively-Bonded Aluminum Alloys Using The Astm Wedge Test, Daniel Gross, Corey Sutton

Materials Engineering

P2 etchant is an environmentally-friendly aluminum etchant which has the potential to replace the Forest Products Laboratory (FPL) etchant as the industry standard. Environmental durability of adhesively-bonded aluminum surfaces etched using a paste version of the P2 etchant were tested using the Boeing-developed wedge test (ASTM D3762 - 03(2010)). This project specifically aimed to examine the relationship between outlife time (the time between etching and adhering) and the ability of bonded aluminum samples to pass the wedge test. Two aluminum alloys, 2024-T3 and 7075-T6, were wedge tested and the etched surfaces examined with an atomic force microscope (AFM) and a ...


Electrochemical Testing Of Aluminum-Lithium Alloys 2050, 2195, And The Current Aerospace Industry Standard 7075 To Measure The Galvanic Corrosion Behavior With Ti-6al-4v, Trent Duncan, Kevin Knight Jun 2015

Electrochemical Testing Of Aluminum-Lithium Alloys 2050, 2195, And The Current Aerospace Industry Standard 7075 To Measure The Galvanic Corrosion Behavior With Ti-6al-4v, Trent Duncan, Kevin Knight

Materials Engineering

This project aimed to characterize the electrochemical behavior of four different aluminum alloys, and determine how much galvanic corrosion would occur when each alloy was coupled to Ti-6Al-4V. The particular alloys tested were 2050-T3, 2050-T852, 2195-T852, and 7075-T7352. These alloys were tested to determine the effects of aging, and adding lithium, to the corrosion behavior of aluminum alloys. Potentiodynamic polarization curves were generated using the Parstat 2273 potentiostat in accordance with ASTM standard G5, and corrosion analysis software was used to produce Tafel fit lines, which determined the open circuit potential (Ecorr) of each sample. Nine tests were run ...


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer ...


Measuring And Increasing The Suspension Time Of Lanthanide Oxysulfide Particles With Modifiers Via Fluorescence For Use In Anti-Counterfeiting Applications, Joe Dei Rossi, Tyler Dinslage, Tyler Schelling Jun 2015

Measuring And Increasing The Suspension Time Of Lanthanide Oxysulfide Particles With Modifiers Via Fluorescence For Use In Anti-Counterfeiting Applications, Joe Dei Rossi, Tyler Dinslage, Tyler Schelling

Materials Engineering

No abstract provided.


Electrochemical Characterization Of Precious Metal Braze Alloys Using Potentiodynamic Polarization, Maxwell Glen Martin, Mason Gregory Morgan, Matthew David Vance Jun 2014

Electrochemical Characterization Of Precious Metal Braze Alloys Using Potentiodynamic Polarization, Maxwell Glen Martin, Mason Gregory Morgan, Matthew David Vance

Materials Engineering

This study aimed to characterize the electrochemical behavior of six precious metal braze alloys by performing potentiodynamic polarization tests (ParStat 2273) based on ASTM Specifications G5 and G59. To determine the extent to which the alloys will contribute to galvanic corrosion in a marine environment (3.5 wt% NaCl), corrosion analysis software was used to produce fitted Tafel lines to determine the open circuit potential, Voc, for each alloy. The Voc values for the alloys were found to be -66.58 mV for Gold ABA, 13.01 mV for Nicoro®, -39.00 mV for Nioro®, 23.4 mV ...


Prediction Of Tribological Behavior Of Candidate Materials For Rotor Seals, John W. Franzino, Will F. Michul Jun 2014

Prediction Of Tribological Behavior Of Candidate Materials For Rotor Seals, John W. Franzino, Will F. Michul

Materials Engineering

To reduce high costs associated with manufacturing and testing materials for rotor seals, a procedure needs to be developed to quickly and accurately test candidate materials as they are released. The test should reduce the amount of fabrication required and model working conditions in order to accurately assess the tribological behavior of candidate materials. A possible solution was examined that utilized a rig meant to model operational stresses and wear. Compression modulus data was then taken in order to quantify the accumulation of damage due to microcracking, the primary mode of failure, through a damage index parameter. Testing results concluded ...


Material Composition And Toxicology Of Cosmetic Products, Hilda Gonzalez Jun 2014

Material Composition And Toxicology Of Cosmetic Products, Hilda Gonzalez

Materials Engineering

In today’s modern society, the U.S. Food and Drug Administration regulates many industries to protect consumers’ health; the cosmetics industry is not one of them. Through self-regulation, companies continue to sell products for topical use on the body that have been known to contain toxic chemicals with little to no testing on the effects they have on the human body. The purpose of this project was to determine the content of such known toxins in five different brands of face powders. X-Ray Diffraction (XRD) was used to verify the primary component and Inductively Coupled Plasma-Optical Emissions Spectroscopy (ICP-OES ...


Development Of Low Temperature, Aqueous Synthesis Method Of Lead Sulfide Quantum Dots, Albert Nakao, Colin Yee Jun 2014

Development Of Low Temperature, Aqueous Synthesis Method Of Lead Sulfide Quantum Dots, Albert Nakao, Colin Yee

Materials Engineering

Quantum dots have become an active area of research in the past decade due to their unique properties. Quantum confinement effects allow for efficient spectral conversion and size tunable fluorescence and absorption peaks. Near infrared spectral converting lead sulfide quantum dots have potential applications in solar power, biological imaging and communications technology. However at Cal Poly, lead sulfide dots have not been synthesized. The quantum dot synthesis currently adapted at Cal Poly encompasses organometallic precursors at high reaction temperatures, producing cadmium selenium dots. The organometallic approach has been found to produce nanocrystals with high quality photoluminescence, but due to its ...