Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum Dec 2023

A Case Study In Cmos Design Scaling For Analog Applications: The Ringamp Ldo, Steven Corum

Masters Theses

As CMOS process nodes scale to smaller feature sizes, process optimizations are made to achieve improvements in digital circuit performance, such as increasing speed and memory, while decreasing power consumption. Unfortunately for analog design, these optimizations usually come at the expense of poorer transistor performance, such as reduced small signal output resistance and increased channel length modulation. The ring amplifier has been proposed as a digital solution to the analog scaling problem, by configuring digital inverters to function as analog amplifiers through deadzone biasing. As digital inverters naturally scale, the ring amplifier is a promising area of exploration for analog …


Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque May 2022

Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque

Doctoral Dissertations

Carbon-based electrodes that are integrable with CMOS readout electrodes possess great potential in a wide range of cutting-edge applications. The primary scientific contribution is the development of a processing sequence which can be implemented on CMOS chips to fabricate pyrolyzed carbon microelectrodes from 3D printed polymer microstructures to develop lab-on-CMOS monolithic electrochemical sensor systems. Specifically, optimized processing conditions to convert 3D printed polymer micro- and nano-structures to carbonized electrodes have been explored in order to obtain sensing electrodes for lab-on- CMOS electrochemical systems. Processing conditions have been identified, including a sequel of oxidative and inert atmosphere anneals to form pyrolyzed …


A Ringamp-Assisted, Output Capacitor-Less Analog Cmos Low-Dropout Voltage Regulator, Jordan Sangid May 2022

A Ringamp-Assisted, Output Capacitor-Less Analog Cmos Low-Dropout Voltage Regulator, Jordan Sangid

Doctoral Dissertations

Continued advancements in state-of-the-art integrated circuits have furthered trends toward higher computational performance and increased functionality within smaller circuit area footprints, all while improving power efficiencies to meet the demands of mobile and battery-powered applications. A significant portion of these advancements have been enabled by continued scaling of CMOS technology into smaller process node sizes, facilitating faster digital systems and power optimized computation. However, this scaling has degraded classic analog amplifying circuit structures with reduced voltage headroom and lower device output resistance; and thus, lower available intrinsic gain. This work investigates these trends and their impact for fine-grain Low-Dropout (LDO) …


Design And Implementation Of A Multi-Modal Sensor With On-Chip Security, Ava Hedayatipour Aug 2020

Design And Implementation Of A Multi-Modal Sensor With On-Chip Security, Ava Hedayatipour

Doctoral Dissertations

With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore's law and …


An Analog Cmos Particle Filter, Trevor Watson Dec 2017

An Analog Cmos Particle Filter, Trevor Watson

Masters Theses

Particle filters are used in a variety of image processing and machine learning applications. Their main use in these applications is to gather information about a system of objects, by using partial or noisy observations collected from sensors. These observations are used to associate points of interest in the observations with objects and maintain this association through a series of observations.

In this paper I will investigate the performance of a particle filter implemented in 130nm analog CMOS hardware. The design goal of the particle filter is low-microwatt power consumption. Using analog hardware, rather than digital ASICs or CPUs I …


Design And Evaluation Of A Sub-1-Volt Read Flash Memory In A Standard 130 Nanometer Cmos Process, David Andrew Basford Dec 2017

Design And Evaluation Of A Sub-1-Volt Read Flash Memory In A Standard 130 Nanometer Cmos Process, David Andrew Basford

Masters Theses

Nonvolatile memory design is a discipline that employs digital and analog circuit design techniques and requires knowledge of semiconductor physics and quantum mechanics. Methods for programming and erasing memory are discussed here, and simulation models are provided for Impact Hot Electron Injection (IHEI), Fowler-Nordheim (FN) tunneling, and direct tunneling. Extensive testing of analog memory cells was used to derive a set of equations that describe the oating-gate characteristics. Measurements of charge retention also revealed several leakage mechanisms, and methods for mitigating leakage are presented.

Fabrication of ash memory in a standard CMOS process presents significant design challenges. The absence of …


Design And Implementation Of A Low‐Power Wireless Respiration Monitoring Sensor, Ifana Mahbub Aug 2017

Design And Implementation Of A Low‐Power Wireless Respiration Monitoring Sensor, Ifana Mahbub

Doctoral Dissertations

Wireless devices for monitoring of respiration activities can play a major role in advancing modern home-based health care applications. Existing methods for respiration monitoring require special algorithms and high precision filters to eliminate noise and other motion artifacts. These necessitate additional power consuming circuitry for further signal conditioning. This dissertation is particularly focused on a novel approach of respiration monitoring based on a PVDF-based pyroelectric transducer. Low-power, low-noise, and fully integrated charge amplifiers are designed to serve as the front-end amplifier of the sensor to efficiently convert the charge generated by the transducer into a proportional voltage signal. To transmit …


A Sub-Threshold Low-Power Integrated Bandpass Filter For Highly-Integrated Spectrum Analyzers, Benjamin David Roehrs May 2017

A Sub-Threshold Low-Power Integrated Bandpass Filter For Highly-Integrated Spectrum Analyzers, Benjamin David Roehrs

Masters Theses

Low-power analog filter banks provide frequency analysis with minimal space requirements, making them viable solutions for integrated remote audio- and vibration-sensing applications. In order to achieve a balance between the length of deployable service and system performance, a critical requirement of such remote sensor networks is low-power consumption, due to the constraints imposed by on-board battery cells.

In this work, the design and implementation of a sub-threshold complementary metal-oxide semiconductor (CMOS) integrated low-power tunable analog filter channel for Oak Ridge National Laboratory is presented. Project specifications required a tunable, high-order, monolithic bandpass filter channel with small chip area and low …


A Low-Power Approach For Front End Biological Signal Conditioning, Logan Smith Taylor Dec 2014

A Low-Power Approach For Front End Biological Signal Conditioning, Logan Smith Taylor

Masters Theses

In a lab-on-a-chip (LOC) application, the measurement of small analog signals such as local temperature variation often involves detection of very low-level signals in a noisy micro-scale environment. This is true for other biomedical monitoring systems as well. These systems observe various physiological parameters or electrochemical reactions that need to be tracked electrically. For temperature measurement pyroelectric transducers represent an efficient solution in terms of speed, sensitivity, and scale of integration, especially when prompt and accurate temperature monitoring is desired.

The ability to perform laboratory operations on a small scale using miniaturized LOC devices is a promising biosensing technique. The …


Characterization And Implementation Of An Injection Locked Frequency Divider Based On Relaxation Oscillator, Kai Zhu Aug 2012

Characterization And Implementation Of An Injection Locked Frequency Divider Based On Relaxation Oscillator, Kai Zhu

Doctoral Dissertations

There has been a dramatic increase in wireless awareness among the user community in the past few years. As the wireless communication devices require more integration in terms of both hardware and software, the low-power integrated circuit (IC) solution has gained higher dedication and will dominate in the future radio-frequency IC (RFIC) design. Complementary Metal-Oxide Semiconductor (CMOS) process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. The transceiver is often the most power-hungry block in a wireless communication system. The frequency divider (prescaler) …


A High -Temperature, High-Voltage, Fast Response Time Linear Regulator In 0.8um Bcd-On-Soi, Chia Hung Su Aug 2010

A High -Temperature, High-Voltage, Fast Response Time Linear Regulator In 0.8um Bcd-On-Soi, Chia Hung Su

Doctoral Dissertations

The sale of hybrid electric vehicles (HEVs) has increased tenfold from the year 2001 to 2009 [1]. With this the demand for high temperature electronics has also increased dramatically making, high temperature electronics for HEV applications desirable in the engine compartment, power train, and brakes where the ambient temperature normally exceeds 150°C. Power converters (i.e. DC-DC converter, DC-AC inverter) inside the HEVs require gate drivers to control the power switches. An integrated gate driver circuit has been realized in 0.8-um BCD-on-SOI process. This gate driver IC needs a step-down voltage regulator to convert the unregulated high input DC voltage (VDDH) …