Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Reference Point Indentation Of Human Trabecular Bone Treated With Bisphosphonates For Varying Durations, Drew Jones Jan 2016

Reference Point Indentation Of Human Trabecular Bone Treated With Bisphosphonates For Varying Durations, Drew Jones

Theses and Dissertations--Biomedical Engineering

Reference point indentation (RPI), a novel form of micro-indentation, quantifies RPI material parameters which correlate with modulus, yield stress, strength, or toughness. Information linking bisphosphonate treatment length with the material properties of osteoporotic trabecular bone is needed to improve patient treatment. The objectives of this study were to: 1) determine if RPI can be used to successfully evaluate human trabecular bone and if so, determine an optimized test method for using RPI on trabecular bone, and 2) use this method to determine if any RPI parameters are related to the duration of bisphosphonate treatment.

Indentation using a 4 N applied …


The Rheological Impact Of Cell Activation On The Flow Behavior Of Neutrophils, Nolan M. Horrall Jan 2016

The Rheological Impact Of Cell Activation On The Flow Behavior Of Neutrophils, Nolan M. Horrall

Theses and Dissertations--Biomedical Engineering

Previously, it was reported that the morphological changes (pseudopod projection) that circulating neutrophils adopt due to cell activation raises peripheral vascular resistance by disrupting microvascular rheology. Studies utilized murine muscle preparations to link neutrophil pseudopod formation to cell activation and a viscous impact on hemodynamic resistance. But because of the complexity associated with the organization of the vasculature and microvasculature in tissues, it was unclear whether the effects of neutrophil activation on hemodynamic resistance were associated with the macro-/micro- circulation. This research describes an in vitro analysis using viscometry and microvascular network mimics (microporous membranes) to assess the rheological impact …


Three-Dimensional Endothelial Spheroid-Based Investigation Of Pressure-Sensitive Sprout Formation, Min Song Jan 2016

Three-Dimensional Endothelial Spheroid-Based Investigation Of Pressure-Sensitive Sprout Formation, Min Song

Theses and Dissertations--Biomedical Engineering

This study explored hydrostatic pressure as a mechanobiological parameter to control in vitro endothelial cell tubulogenesis in 3-D hydrogels as a model microvascular tissue engineering approach. For this purpose, the present investigation used an endothelial spheroid model, which we believe is an adaptable microvascularization strategy for many tissue engineering construct designs. We also aimed to identify the operating magnitudes and exposure times for hydrostatic pressure-sensitive sprout formation as well as verify the involvement of VEGFR-3 signaling. For this purpose, we used a custom-designed pressure system and a 3-D endothelial cell spheroid model of sprouting tubulogenesis. We report that an exposure …