Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 77

Full-Text Articles in Engineering

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Study Of Thin Gan/Ingan/Gan Double Graded Structures For Future Photovoltaic Application, Mirsaeid Sarollahi Aug 2022

Study Of Thin Gan/Ingan/Gan Double Graded Structures For Future Photovoltaic Application, Mirsaeid Sarollahi

Graduate Theses and Dissertations

Indium gallium nitride (In_x Ga_(1-x) N) materials have displayed great potential for photovoltaic and optoelectronic devices due to their optical and electrical properties. Properties such as direct bandgap, strong bandgap absorption, thermal stability and high radiation resistance qualify them as great materials for photovoltaic devices. The tunable bandgap which absorbs the whole solar spectrum is the most significant feature which became attractive for scientists. The bandgap for these materials varies from 0.7 eV for InN to 3.4 eV for GaN covering from infrared to ultraviolet. In_x Ga_(1-x) N wurtzite crystal is grown on GaN buffer layer by Molecular Beam Epitaxy …


Etching Process Development For Sic Cmos, Weston Reed Renfrow Aug 2022

Etching Process Development For Sic Cmos, Weston Reed Renfrow

Graduate Theses and Dissertations

Silicon Carbide (SiC) is an exciting material that is growing in popularity for having qualities that make it a helpful semiconductor in extreme environments where silicon devices fail. The development of a SiC CMOS is in its infancy. There are many improvements that need to be made to develop this technology further. Photolithography is the most significant bottleneck in the etching process; it was studied and improved upon. Etching SiC can be a challenge with its reinforced crystal structure. Chlorine-based inductively coupled plasma (ICP) etching of intrinsic SiC and doped SiC, SiO2, and Silicon has been studied. A baseline chlorine …


Xps And Ipe Determination Of Band Offsets Of Germanium Based Materials, Justin Michael Rudie Aug 2022

Xps And Ipe Determination Of Band Offsets Of Germanium Based Materials, Justin Michael Rudie

Graduate Theses and Dissertations

Germanium tin and silicon germanium tin are group IV semiconductor alloys that have gained significant interest in recent years for their potential use in optoelectrical devices. While silicon and germanium are indirect bandgap materials on their own, alloying them with tin in sufficient quantities leads to a transition to direct bandgap alloys. Direct gap performance opens the door for efficient light emitting and detecting devices fabricated entirely on group IV materials that are compatible with the industry standard CMOS manufacturing techniques. Germanium tin and silicon germanium tin have bandgaps that respond to light in the mid to near infrared spectrum …


Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu Aug 2022

Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu

Graduate Theses and Dissertations

With graphene at the center of several application areas such as sensing, circuits, high-frequency devices for communication systems, etc., it is crucial to understand how the intrinsic properties of devices made from graphene and other materials like platinum and palladium nanoparticles affect the performance of such devices for the specific application area. Many graphene-based devices for different application areas have focused mainly on the material composition of the graphene-based devices and how it affects performance parameters for the specific application. However, it would be insightful to understand how the intrinsic electrical properties of the graphene devices for different applications affect …


Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke Aug 2022

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda May 2022

Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda

Graduate Theses and Dissertations

Since it was first isolated and characterized in 2004, graphene has shown the potential for a technological revolution. This is due to its amazing physical properties such as high electrical conductivity, high thermal conductivity, and extreme flexibility. Freestanding graphene membranes naturally possesses an intrinsic rippled structure, and these ripples are in constant random motion even room temperatures. Occasionally, the ripples undergo spontaneous buckling (change of curvature from concave to convex and vice versa) and the potential energy associated with this is a double well potential. This movement of graphene is a potential source of vibrational energy.

In this dissertation, we …


Hybrid Two Dimensional Quantum Devices, Joshua Patrick Thompson Dec 2021

Hybrid Two Dimensional Quantum Devices, Joshua Patrick Thompson

Graduate Theses and Dissertations

This thesis describes measurements on hybrid material systems involving two dimensional (2D) materials and phenomena along with the development of a small, hermetically sealed cell. The hermetic cell is designed to assist with analyzing sensitive 2D materials outside of an inert environment. When working with van der Waals materials that are especially sensitive to oxygen or water, it can be difficult to identify usable thin flakes without exposing them to air. To help preserve materials for analysis in air, a capsule was designed that isolates the material in an inert environment. Although the capsule is hermetically sealed, the encapsulated material …


Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola Dec 2021

Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola

Graduate Theses and Dissertations

Silicon (Si)-based optoelectronics have gained traction due to its primed versatility at developing light-based technologies. Si, however, features indirect bandgap characteristics and suffers relegated optical properties compared to its III-V counterparts. III-Vs have also been hybridized to Si platforms but the resulting technologies are expensive and incompatible with standard complementary-metal-oxide-semiconductor processes. Germanium (Ge), on the other hand, have been engineered to behave like direct bandgap material through tensile strain interventions but are well short of attaining extensive wavelength coverage. To create a competitive material that evades these challenges, transitional amounts of Sn can be incorporated into Ge matrix to form …


Two-Dimensional Black Phosphorus For Terahertz Emission And Near-Field Radiative Heat Transfer, Mahmudul Hasan Doha Dec 2021

Two-Dimensional Black Phosphorus For Terahertz Emission And Near-Field Radiative Heat Transfer, Mahmudul Hasan Doha

Graduate Theses and Dissertations

The main focus of this work is to investigate two potential optical and optoelectronic applications of black phosphorus (BP): the near-field radiative heat transfer in plasmonic heterostructures with graphene and terahertz emission from multi-layer BP photoconductive antennas. When the separation distance between graphene-black phosphorene is much smaller than or comparable to the thermal wavelength at different temperatures, a near-field radiation heat transfer breaks the Planck blackbody limit. The magnitude of the near-field radiation enhancement acutely depends on the gate voltage, doping, and vacuum gap of the graphene and BP pair. The strong near-field radiation heat transfer enhancement of the specific …


Distributed Modeling Approach For Electrical And Thermal Analysis Of High-Frequency Transistors, Amirreza Ghadimi Avval Jul 2021

Distributed Modeling Approach For Electrical And Thermal Analysis Of High-Frequency Transistors, Amirreza Ghadimi Avval

Graduate Theses and Dissertations

The research conducted in this dissertation is focused on developing modeling approaches for analyzing high-frequency transistors and present solutions for optimizing the device output power and gain. First, a literature review of different transistor types utilized in high-frequency regions is conducted and gallium nitride high electron mobility transistor is identified as the promising device for these bands. Different structural configurations and operating modes of these transistors are explained, and their applications are discussed. Equivalent circuit models and physics-based models are also introduced and their limitations for analyzing the small-signal and large-signal behavior of these devices are explained. Next, a model …


Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril Jul 2021

Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril

Graduate Theses and Dissertations

Photodetectors are devices that capture light signals and convert them into electrical signals. High performance photodetectors are in demand in a variety of applications, such as optical communication, security, and environmental monitoring. Among many appealing nanomaterials for novel photodetection devices, graphene and semiconductor colloidal nanocrystals are promising candidates because of their desirable and unique properties compared to conventional materials.

Photodetector devices based on different types of nanostructured materials including graphene and colloidal nanocrystals were investigated. First, graphene layers were mechanically exfoliated and characterized for device fabrication. Self-powered few layers graphene phototransistors were studied. At zero drain voltage bias and room …


Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud Jul 2021

Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud

Graduate Theses and Dissertations

Direct torque control (DTC) is an extensively used control method for motor drives due to its unique advantages, e.g., the fast dynamic response and the robustness against motor parameters variations, uncertainties, and external disturbances. Using higher switching frequency is generally required by DTC to reduce the torque ripples and decrease stator current total harmonic distortion (THD), which however can lower the drive efficiency. Through the use of the emerging silicon carbide (SiC) devices, which have lower switching losses compared to their silicon counterparts, it is feasible to achieve high efficiency and low torque ripple simultaneously for DTC drives.

To overcome …


Performance And Economics Of Solar Inverters And Module Level Power Electronics In A 1 Mw Photovoltaic System, Maxwell Criswell May 2021

Performance And Economics Of Solar Inverters And Module Level Power Electronics In A 1 Mw Photovoltaic System, Maxwell Criswell

Biological and Agricultural Engineering Undergraduate Honors Theses

Photovoltaic solar panels convert sunlight to electricity in the form of direct current; therefore, a necessary component of every photovoltaic system is an inverter to convert the electricity to usable alternating current. There are various commercially available inverter technologies manufactured today such as microinverters, string inverters, and central inverters, as well as module level power electronic devices such as DC optimizers that are capable of improving system performance in string and central inverter systems. This thesis compares the performance and economics of five different inverter and module level power electronic systems through model simulation using Helioscope software. The five alternatives …


Characterization Of Gesn Semiconductors For Optoelectronic Devices, Hryhorii Stanchu May 2021

Characterization Of Gesn Semiconductors For Optoelectronic Devices, Hryhorii Stanchu

Graduate Theses and Dissertations

Germanium-tin alloys with Sn compositions higher than 8 at. % to 10 at. % have recently attracted significant interest as a group IV semiconductor that is ideal for active photonics on a Si substrate. The interest is due to the fact that while at a few percent of Sn, GeSn is an indirect bandgap semiconductor, at about 8 to 10 at. % Sn, GeSn transitions to a direct bandgap semiconductor. This is at first surprising since the solid solubility of Sn in Ge under equilibrium growth conditions is limited to only about 1 at. %. However, under non-equilibrium growth conditions, …


Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran May 2021

Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran

Graduate Theses and Dissertations

Infrared (IR) radiation spans the wavelengths of the windows: (1) near-IR region ranging from 0.8 to 1.0 μm, (2) shortwave IR (SWIR) ranging from 1.0 to 3.0 μm, (3) mid-wave IR (MWIR) region covering from 3.0 to 5.0 μm, (4) longwave IR (LWIR) spanning from 8.0 to 12.0 μm, and (5) very longwave IR extending beyond 12.0 μm. The MWIR and LWIR regions are important for night vision in the military, and since the atmosphere does not absorb at these wavelengths, they are also used for free-space communications and astronomy. Automotive and defect detection in the food industry and electronic …


Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji Dec 2020

Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji

Graduate Theses and Dissertations

Semiconductor packaging and development is greatly dependent on the magnitude of interconnect and on-chip stress that ultimately limits the reliability of electronic components. Thermomechanical related strains occur because of the coefficient of thermal expansion mismatch from different conjoined materials being assembled to manufacture a device. To curb the effect of thermal expansion mismatch between conjoined parts, studies have been done in integrating compliant structures between dies, solder balls, and substrates. Initial studies have enabled the design and manufacturing of these structures using a photolithography approach which involves a high number of fabrication steps depending on the complexity of the structures …


Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo Dec 2020

Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo

Graduate Theses and Dissertations

Photoluminescence (PL) and Electroluminescence (EL) characterization techniques are important tools for studying the optical and electrical properties of (Si)GeSn. Light emission from these PL and EL measurements provides relevant information on material quality, bandgap energy, current density, and device efficiency. Prior to this work, the in-house PL set-up of this lab which involves the use of a commercially-obtained dispersive spectrometer was used for characterizing both GeSn thin film and fabricated devices, but these measurements were limited by issues bordering on low spectral resolution, spectral artifacts, and poor signal-to-noise ratio (SNR) thereby resulting in the possible loss of vital information and …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …


Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar Dec 2020

Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar

Graduate Theses and Dissertations

Numerous industries require electronics to operate reliably in harsh environments, such as extreme high temperatures (HTs), low temperature (LT), radiation rich environments, multi-extreme, etc. This dissertation is focused on two harsh environments: HT and multi-extreme.

The first study is on HT optoelectronics for future high-density power module applications. In the power modules design, galvanic isolation is required to pass through the gate control signal, reject the transient noise, and break the ground loops. The optocoupler, which consists of a lighting emitting diode (LED) and photodetector (PD), is commonly used as the solution of galvanic isolation at room temperatures. There is …


Studies Of Initial Growth Of Gan On Inn, Alaa Alnami Dec 2019

Studies Of Initial Growth Of Gan On Inn, Alaa Alnami

Graduate Theses and Dissertations

III-nitride materials have recently attracted much attention for applications in both the microelectronics and optoelectronics. For optoelectronic devices, III-nitride materials with tunable energy band gaps can be used as the active region of devices to enhance the absorption or emission. A such material is indium nitride (InN), which along with gallium nitride (GaN) and aluminum nitride (AlN) embody the very real promise of forming the basis of a broad spectrum, a high efficiency solar cell. One of the remaining complications in incorporating InN into a solar cell design is the effects of the high temperature growth of the GaN crystal …


Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao Aug 2019

Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao

Graduate Theses and Dissertations

The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability.

However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs …


Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor Aug 2019

Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor

Graduate Theses and Dissertations

Over the last decade, the evolution of the global consciousness in response to decreasing environmental conditions from global warming and pollution has led to an outcry for finding new alternative/clean methods for harvesting energy and determining ways to minimize energy consumption. III-nitride materials are of interest for optoelectronic and electronic device applications such as high efficiency solar cells, solid state lighting (LEDs), and blue laser (Blu-ray Technology) applications. The wide range of direct band gaps covered by its alloys (0.7eV-6.2eV) best illustrates the versatility of III-nitride materials. This wide range has enabled applications extending from the ultraviolet to the near …


A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles May 2019

A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles

Graduate Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon germanium (SiGe) complementary metal-oxide-semiconductor (CMOS) linear regulator. The objective of the circuit is to power other analog devices regardless of the load current and input voltage changes. The application of this regulator is to be part of a project developing a miniaturized semiconductor platform that can be inserted into stems of crops in order to measure data inside the plant and then send it wirelessly to the user. The linear regulator was designed on a BiCMOS SiGe 0.13µm which is a GlobalFoundries process. It has been tested at …


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Bgaas Alloy Semiconductors For Lasers On Silicon, Joshua Mcarthur May 2019

Bgaas Alloy Semiconductors For Lasers On Silicon, Joshua Mcarthur

Mechanical Engineering Undergraduate Honors Theses

In the world of semiconductors today, there is a large dissonance between optical devices and electrical application. Due to the limitations of electron transport, photonic integrated circuits are soon-to-be vital in fields like telecommunications and sensing. Right now, these PIC’s are mostly made from indium phosphide. Due to its ubiquitous nature, however, there is a huge push to integrate efficient optics with silicon. It’s cheap, abundant, dope-able, and our electronic infrastructure is based on it. The reason why silicon photonics aren’t already commercialized is because of silicon’s indirect bandgap—it is inefficient with optical applications. The problem with combining direct gap …


Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh May 2019

Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh

Graduate Theses and Dissertations

This dissertation is aimed to numerically study the effect of plasmonic grating electrodes on the efficiency of metal-semiconductor-metal photodetectors (MSM PDs) and the sensitivity of Surface Enhanced Raman Spectroscopy (SERS). This research can benefit many areas of nanoscience and optics, including plasmonic applications, such as, super lenses, nano-scale optical circuits, optical filters, surface plasmon enhanced photo-detectors solar cells, imaging sensors, charge-coupled devices (CCD), and optical-fiber communication systems. Several parameters, wire widths and thickness, gap space, taper angle, and the incident wavelength and angle, were investigated. The goal of this research is to utilize the plasmonic phenomenon by using plasmonic gratings …