Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Grid-Connected Renewable Energy Systems For Residential Hvac Load Management, Oscar Samuel Acosta May 2022

Grid-Connected Renewable Energy Systems For Residential Hvac Load Management, Oscar Samuel Acosta

Open Access Theses & Dissertations

With an ongoing mission of utility operators to maintain a resilient and reliable power grid in the face of continuously increasing load demand, it is essential that advancements be made in developing both technology and methodology to help account for the increasing energy requirements. According to the U.S. Department of Energy (DOE) and Energy Information Administration (EIA), the residential end-use sector alone counted for 22% of all electricity used in the U.S. in 2020. Of this, approximately 32% of household electricity load is the direct result of air conditioning and space heating units (HVAC). One way to account for this …


Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio Jan 2020

Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio

Open Access Theses & Dissertations

By performing strong characterizations methods, one can begin to fully understand the chemistry and composition behind a great performing perovskite solar cell. Understanding how the interaction between layers inside a solar cell is driven by the temperature and overall environment is a key element to improve the fabrication process and overall efficiency of such cells. This Thesis will present a study of the hybrid organic-inorganic, mixed-cation, mixed-halide, temperature and thickness-controlled perovskite solar cell. A constant power conversion efficiency (PCE) ranging between 15-17% and an open circuit voltage V¬oc above 1.05 V for a wide-band gap perovskite cell is presented.


Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate May 2015

Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate

Graduate Theses and Dissertations

Passivating silicon solar cell surfaces is critical to fabricating very high efficiency and low cost photovoltaic devices. The sun-facing surface of the solar cell, known as the emitter, is particularly important when designing a solar cell. This work focused first on an alternative method of forming the emitter of silicon solar cells, and secondly on a method for improving the surface passivation of both these non-traditional and standard n-type solar cells.

Top-down aluminum induced crystallization (TAIC) was used for forming a polycrystalline silicon layer from amorphous silicon using aluminum to catalyze the crystallization at much lower temperatures than otherwise possible. …


A Decision Support System To Analyze, Predict, And Evaluate Solar Energy System Performance: Pvsysco (Photovoltaic System Comparison), Lisa Bosman Aug 2014

A Decision Support System To Analyze, Predict, And Evaluate Solar Energy System Performance: Pvsysco (Photovoltaic System Comparison), Lisa Bosman

Theses and Dissertations

In 2010, the U.S. Department of Energy announced the SunShot Initiative, which aims to reduce the total installation cost of solar technologies by 75% between 2010 and 2020. This implies that solar energy is a top priority in the U.S. and many other countries. The purpose of this dissertation research is focused on creating a model to better understand the performance and reliability of photovoltaic (PV) energy systems over time. The model will be used to analyze, predict, and evaluate the performance of PV systems, taking into consideration technological and geographical location attributes. The overall research goal is to build …


Technology Agnostic Analysis And Design For Improved Performance, Variability, And Reliability In Thin Film Photovoltaics, Sourabh Dongaonkar Oct 2013

Technology Agnostic Analysis And Design For Improved Performance, Variability, And Reliability In Thin Film Photovoltaics, Sourabh Dongaonkar

Open Access Dissertations

Thin film photovoltaics (TFPV) offer low cost alternatives to conventional crystalline Silicon (c-Si) PV, and can enable novel applications of PV technology. Their large scale adoption however, requires significant improvements in process yield, and operational reliability. In order to address these challenges, comprehensive understanding of factors affecting panel yield, and predictive models of performance reliability are needed. This has proved to be especially challenging for TFPV for two reasons in particular. First, TFPV technologies encompass a wide variety of materials, processes, and structures, which fragments the research effort. Moreover, the monolithic manufacturing of TFPV modules differs significantly from that of …


An Approach To Power Efficiency Determination In The Solar Energy Systems Using Central Composite Design And Box-Behnken Design, Juan Venegas Mendez Jan 2013

An Approach To Power Efficiency Determination In The Solar Energy Systems Using Central Composite Design And Box-Behnken Design, Juan Venegas Mendez

Open Access Theses & Dissertations

We are living in an industrialized world that relies on fossil fuels. The ways, in which these fossil fuels have damaged the earth, in special the environment is worth of special attention and corrective actions. In our days, the climate change (global warming) it is becoming the number one topic. These changes are affecting our health, comfort and our way of living. Solar systems have been working among us since several years, but the truth is that most of us really don't understand how they work and more important, how they work in time in different conditions. Solar panels are …


Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer Jul 2011

Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer

Electrical & Computer Engineering Theses & Dissertations

Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies.

When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is …


Hybrid Inorganic/Organic Nanostructured Tandem Solar Cells: Simulation And Fabrication Methods, Patrick Michael Boland Jr. Jan 2011

Hybrid Inorganic/Organic Nanostructured Tandem Solar Cells: Simulation And Fabrication Methods, Patrick Michael Boland Jr.

Electrical & Computer Engineering Theses & Dissertations

Organic solar cell technologies continue to be an extremely active area of scientific research. With their promise of providing low-cost, easily-processable, multi-application photovoltaics, these devices could very possibly be the most viable and practical form of renewable energy among many being explored. However, significant technological obstacles remain that must be overcome if this technology is to successfully realize the goal of providing abundant energy while simultaneously reducing dependence on fossil fuel-based sources. Compared with inorganic solar photovoltaics, power conversion efficiencies in organics are still too low to compete economically.

Much research has been accomplished over the past three decades in …