Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Wind Flow Modeling For Wind Energy Analysis Of The Nellis Dunes Area In Nevada, Upendra Rangegowda Aug 2010

Wind Flow Modeling For Wind Energy Analysis Of The Nellis Dunes Area In Nevada, Upendra Rangegowda

UNLV Theses, Dissertations, Professional Papers, and Capstones

A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate the surface model and to create a 3-D mesh of the region. Local meteorological tower data collected for a period of one year was used to generate the diagnostic initial wind fields. Upper level wind fields were created using a surface boundary layer technique along with linear interpolation of the tower level wind fields. The vertical components of the velocities were adjusted using the equation of continuity. Mass consistent 3-D wind fields were then calculated …


An Exploratory Study On Energy Consumption Of Energy Star And Non-Energy Star Homes, Prajakta Kulkarni May 2010

An Exploratory Study On Energy Consumption Of Energy Star And Non-Energy Star Homes, Prajakta Kulkarni

UNLV Theses, Dissertations, Professional Papers, and Capstones

The reduction of energy consumption is one of the economic necessities in the United States due to depleting energy sources in the world. The construction industry is stepping forward to reduce the energy consumption of buildings by efficient designs or by constructing buildings with energy efficient materials and features. In 1992, the U.S. Environmental Protection Agency (EPA) and Department of Energy (DOE) introduced the Energy Star Program to promote energy efficient products with the same or improved services. According to the EPA, Energy Star homes, which use these products, will consume 20 to 30 percent less energy than non-Energy Star …


Simulation And Optimization Of Ultra Thin Photovoltaics, Jose Luis Cruz-Campa Jan 2010

Simulation And Optimization Of Ultra Thin Photovoltaics, Jose Luis Cruz-Campa

Open Access Theses & Dissertations

Sandia National Laboratories (SNL) conducts pioneering research and development in Micro-Electro-Mechanical Systems (MEMS) and solar cell research. This dissertation project combines these two areas to create ultra-thin small-form-factor crystalline silicon (c-Si) solar cells. These miniature solar cells create a new class of photovoltaics with potentially novel applications and benefits such as dramatic reductions in cost, weight and material usage.

At the beginning of the project, unusually low efficiencies were obtained in the research group. The intention of this research was thus to investigate the main causes of the low efficiencies through simulation, design, fabrication, and characterization.

Commercial simulation tools were …


Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud Jan 2010

Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud

Open Access Theses & Dissertations

Several new wide band gap semiconductor nanocomposite photocatalytic materials have been synthesized from HTiNbO5 and HNb3O8 for solar energy conversion. As a source of renewable energy, the materials are being tested to produce hydrogen fuel from water via photolysis. The materials have high surface areas, are macroporous, and have flatband potentials suitable for reducing water to create hydrogen. Under visible or ultra violet light, the materials were found to be very promising as hydrogen evolving photocatalysts. As part of the synthesis of the composites, the catalysts also exhibited excellent catalytic activity under UV light for reducing ionic platinum and gold …


Investigating Fabrication Methods For Micro Single-Chamber Solid Oxide Fuel Cells, Man Yang Jan 2010

Investigating Fabrication Methods For Micro Single-Chamber Solid Oxide Fuel Cells, Man Yang

Dissertations

A Solid Oxide Fuel Cell (SOFC) is a green energy technology that offers a cleaner and efficient alternative to fossil fuels. The efficiency and utility of SOFCs can be enhanced by fabricating miniaturized component structures within the fuel cell footprint. This research focuses on the microfabrication of parallel-connected inter-digitized design of micro single chamber SOFC (μ-SC-SOFCs). In this dissertation, candidate micro/nano fabrication techniques to precisely fabricate micro patterns on planar substrates have been studied. These include EBL, soft lithography, photolithography, and direct-writing. After analyzing preliminary results, two combinational approaches were further investigated. The first method involves the combination of the …


Ab Initio Simulations Of Hydrogen And Lithium Adsorption On Silicene, Tim H. Osborn Jan 2010

Ab Initio Simulations Of Hydrogen And Lithium Adsorption On Silicene, Tim H. Osborn

Browse all Theses and Dissertations

The energies and temperature-dependent dynamics of hydrogen and lithium chemisorption on a silicon nanosheet, called silicene, were studied using density functional theory and molecular-dynamics (MD) simulations. Silicene has a buckled honeycomb structure, and has been fabricated as suspended monolayer sheets and nanoribbons in recent experiments. We calculated the adsorption energies of hydrogen and lithium on silicene for different adsorption ratios between 3.1% and 100%. The studies will clarify the characteristics of these novel and promising nanomaterials, and pave the way for their applications.

For Hydrogen, the adsorption energy had a maximum of 3.01 eV/H for complete hydrogenation, and decreased by …


Sulfur-Tolerant Catalyst For The Solid Oxide Fuel Cell, Bozeman Joe Frank Iii Jan 2010

Sulfur-Tolerant Catalyst For The Solid Oxide Fuel Cell, Bozeman Joe Frank Iii

Browse all Theses and Dissertations

JP-8 fuel is easily accessible, transportable, and has hydrogen content essential to solid oxide fuel cell (SOFC) operation. However, this syngas has sulfur content which results in a poisonous hydrogen sulfide that degrades electrochemical activity and causes complete SOFC failure in some cases. The goal is to synthesize and verify a cost-effective, catalyst supported on cerium oxide that either stabilizes ionic conductivity in the presence of hydrogen sulfide and/or is highly sulfur-resistant. After thorough computational analysis, it was concluded that the platinum-copper skin catalyst was the most cost-effective, sulfur-resistant catalyst. Experimental synthesis of copper, platinum, and platinum-copper skin catalysts supported …


Fabrication Of Zinc Oxide Thin Films For Renewable Energy And Sensor Applications, Theresa Y. Hill Jan 2010

Fabrication Of Zinc Oxide Thin Films For Renewable Energy And Sensor Applications, Theresa Y. Hill

Browse all Theses and Dissertations

Progress in commercializing renewable energy technologies is being advanced by developments in Zinc Oxide material science. The photovoltaic cell, for example, generates electricity by receiving solar energy into the cell, generating electrons, and simultaneously transporting electrical charge out of the cell. Metals are capable of removing electrical charge but block transmission of sunshine. Glass and plastics are capable of transmitting sunshine but block the removal of electrical charge. Therefore an exterior layer that is both optically transparent and electrically conductive is desirable. Transparent conductive oxides (TCOs) are the ideal material for such applications since they are capable of both functions. …