Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Dynamics Of Spatiotemporal Heterogeneities In Particulate Intercalation Electrodes, Shubham Agrawal Aug 2022

Dynamics Of Spatiotemporal Heterogeneities In Particulate Intercalation Electrodes, Shubham Agrawal

McKelvey School of Engineering Theses & Dissertations

Electrochemical energy systems rely on particulate porous electrodes to store or convert energies. While the three-dimensional porous structures of the electrodes were introduced to maximize the interfacial area for better overall performance of the system, spatiotemporal heterogeneities arising from materials thermodynamics localize the charge transfer processes onto a limited portion of the available interfaces. These reaction heterogeneities may cause local hot and cold spots, and early battery failures. This dissertation focuses on the following three aspects of the dynamic reaction heterogeneities in the particulate cathodes and anodes in the lithium-ion batteries: (i) the real-time evolution of reaction heterogeneities in graphite …


Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin Aug 2019

Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin

McKelvey School of Engineering Theses & Dissertations

Concerns over the impact of climate change caused by CO2 emission have driven the research and development of renewable energies. Microbial production of chemicals is being viewed as a feasible approach to reduce the use of fossil fuels and minimize the impact of climate change. With recent advances in synthetic biology, microorganisms can be engineered to synthesize petroleum-based chemicals and plant-derived compounds. Cyanobacteria are photosynthetic prokaryotes that use only sunlight, CO2, and trace minerals for growth. Compared to other microbial hosts, cyanobacteria are attractive platforms for sustainable bioproduction, because they can directly convert CO2 into products. However, the major challenge …


Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin Aug 2019

Metabolic Engineering Of Cyanobacteria For Production Of Chemicals, Po-Cheng Lin

McKelvey School of Engineering Theses & Dissertations

Concerns over the impact of climate change caused by CO2 emission have driven the research and development of renewable energies. Microbial production of chemicals is being viewed as a feasible approach to reduce the use of fossil fuels and minimize the impact of climate change. With recent advances in synthetic biology, microorganisms can be engineered to synthesize petroleum-based chemicals and plant-derived compounds. Cyanobacteria are photosynthetic prokaryotes that use only sunlight, CO2, and trace minerals for growth. Compared to other microbial hosts, cyanobacteria are attractive platforms for sustainable bioproduction, because they can directly convert CO2 into products. However, the major challenge …


Self-Assembly Of Conducting Polymer Nano- And Microstructures For Energy Storage, Luciano Matteo Santino Aug 2019

Self-Assembly Of Conducting Polymer Nano- And Microstructures For Energy Storage, Luciano Matteo Santino

Arts & Sciences Electronic Theses and Dissertations

Plastics are materials composed of many long chains of molecules with repeating subunits; strong interactions between neighboring molecules lead to the material used throughout the world. Plastics are commonly thought to be insulating, in stark contrast to the conductivity of metals. However, certain polymer structures were discovered to exhibit semiconducting properties, the subject of the Nobel Prize in Chemistry in 2000. Conducting polymers have a unique molecular structure with an electronically conjugated backbone, allowing electrons to freely travel both across the chain and in between chains. This work focuses on controlling the kinetics of the reaction between the vapors of …


Studies In Pressurized Oxy-Combustion: Process Development And Control Of Radiative Heat Transfer, Akshay Gopan Aug 2017

Studies In Pressurized Oxy-Combustion: Process Development And Control Of Radiative Heat Transfer, Akshay Gopan

McKelvey School of Engineering Theses & Dissertations

Fossil fuels supply over 80% of the world’s primary energy and more than two-thirds of the world’s electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide—a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would …


Sub 2 Nm Particle Characterization In Systems With Aerosol Formation And Growth, Yang Wang May 2017

Sub 2 Nm Particle Characterization In Systems With Aerosol Formation And Growth, Yang Wang

McKelvey School of Engineering Theses & Dissertations

Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied …


Nanostructured Thin Film Synthesis By Aerosol Chemical Vapor Deposition For Energy Storage Applications, Tandeep Singh Chadha Aug 2016

Nanostructured Thin Film Synthesis By Aerosol Chemical Vapor Deposition For Energy Storage Applications, Tandeep Singh Chadha

McKelvey School of Engineering Theses & Dissertations

Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new …


Modeling, Simulation, And Analysis Of Lithium-Ion Batteries For Grid-Scale Applications, Matthew Thomas Lawder May 2016

Modeling, Simulation, And Analysis Of Lithium-Ion Batteries For Grid-Scale Applications, Matthew Thomas Lawder

McKelvey School of Engineering Theses & Dissertations

Lithium-ion batteries have become universally present in daily life, being used across a wide range of portable consumer electronics. These batteries are advantageous compared to other forms of energy storage due to their high energy density and long cycle life. These characteristics make lithium-ion batteries advantageous for many new and developing applications that require large scale energy storage such as electric vehicles and the utility grid. Typical uses for lithium-ion batteries require consistent cycling patterns that are predictable and easy to approximate across all uses, but new large scale applications will have much more dynamic demands. The cycling patterns for …


Theory Of Carrier Transport From First Principles: Applications In Photovoltaic And Thermoelectric Materials, Alireza Faghaninia May 2016

Theory Of Carrier Transport From First Principles: Applications In Photovoltaic And Thermoelectric Materials, Alireza Faghaninia

McKelvey School of Engineering Theses & Dissertations

New sources of energy that are environmentally friendly, cost-effective, and renewable are essential if we are to combat the effects of global climate change. Two of these sources are solar photovoltaic (PV) cells to convert sunlight into electricity and thermoelectric (TE) devices to convert heat to electricity. To be practical on a large scale, the properties (e.g. electrical conductivity, band gap, Seebeck coefficient, etc) of the the underlying materials must be improved significantly through judicious control of structure and composition. Significant understanding of materials properties is required to design and engineer new high-performing materials. First principles calculations using density functional …