Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Resistive Switching Characteristics Of Nanostructured And Solution-Processed Complex Oxide Assemblies, Zimu Zhou May 2020

Resistive Switching Characteristics Of Nanostructured And Solution-Processed Complex Oxide Assemblies, Zimu Zhou

Doctoral Dissertations

Miniaturization of conventional nonvolatile (NVM) memory devices is rapidly approaching the physical limitations of the constituent materials. An emerging random access memory (RAM), nanoscale resistive RAM (RRAM), has the potential to replace conventional nonvolatile memory and could foster novel type of computing due to its fast switching speed, high scalability, and low power consumption. RRAM, or memristors, represent a class of two terminal devices comprising an insulating layer, such as a metal oxide, sandwiched between two terminal electrodes that exhibits two or more distinct resistance states that depend on the history of the applied bias. While the sudden resistance reduction …


An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood Jan 2014

An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood

Graduate College Dissertations and Theses

The enhancement of strength of nanoscale materials such as face-centered cubic metal nanowires is well known and arises largely from processes mediated by high energy surface atoms. This leads to strong size effects in nanoscale plasticity; ,smaller is stronger. Yet, other factors, such as crystalline defects also contribute greatly to the mechanical properties. In particular, twin boundaries, which are pervasive and energetically favorable defects in face-centered cubic metal nanowires, have been shown to greatly enhance the strength, furthermore this increase in strength has been shown to be directly influenced by the twin density. However, attempts to control the …


High Speed Atomic Force Microscopy Techniques For The Efficient Study Of Nanotribology, James L. Bosse May 2012

High Speed Atomic Force Microscopy Techniques For The Efficient Study Of Nanotribology, James L. Bosse

Master's Theses

As mechanical devices scale down to micro/nano length scales, it is crucial to understand friction and wear at the nanoscale (nanotribology) especially at technically relevant sliding velocities. Accordingly, three novel techniques have been developed to study nanotribology, leveraging recent advances in high speed AFM. The first method utilizes high line-scanning rates coupled with sinusoidal scanning along the AFM fast scan axis, enabling rapid friction measurements as a function of velocity up to 20 mm/sec. The second method rapidly acquires friction versus force curves through disabling the feedback loop during scanning and relating the resulting lateral data with the correspondingly varying …


Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes May 2012

Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes

Master's Theses

Scanning Probe Microscopy techniques have proven very useful in the investigation of porous nanostructured surfaces. Especially, Atomic Force Microscopy (AFM) has been widely used due to its compatibility with non-conducting surfaces. In particular, AFM often complements other techniques like scanning and transmission electron microscopy by providing quantitative surface information coupled with nanoscale spatial resolution. Its ability to operate in fluid is also important, as this allows researchers to mimic the physiological environment of biological materials and systems. In this work, two main types of porous materials are studied with AFM, including Phosphoric Acid Fuel Cell (PAFC) electrode catalyst layers, and …


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as a …


Atomic Force Microscopy For Better Probing Surface Properties At Nanoscale: Calibration, Design And Application, Yu Liu Oct 2010

Atomic Force Microscopy For Better Probing Surface Properties At Nanoscale: Calibration, Design And Application, Yu Liu

Electronic Thesis and Dissertation Repository

To measure force by AFM with high resolution requires accurate calibration of optic – lever detection sensitivity and spring constant. On biological AFM force mode, the coupling effects of the liquid environment, spot size of laser beam and laser spot location on AFM cantilever backside, must be considered to correlate the static sensitivities from force curves in air and in liquid for calibration. An effective model has been developed first and experimentally elucidated to calibrate the static sensitivity in liquid. The proposed model eliminates inconvenience of static sensitivity calibration in liquid with possible contamination sources.

The static sensitivity based on …