Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Nanoscience and Nanotechnology

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 850

Full-Text Articles in Engineering

Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt Jan 2020

Impact Of Chain Architecture On The Thickness Dependence Of Physical Aging Rate Of Thin Polystyrene Films, Gregory Brown, Elizabeth Lewis, Bryan D. Vogt

Williams Honors College, Honors Research Projects

The dynamics of polymer thin films have been demonstrated to be significantly altered from the bulk, but the origins of such differences are not well defined. In this work, we seek to understand the differences in the structural dynamics (or physical aging) of polystyrene (PS) through branching and other well defined architectures (comb and centipede). The aging dynamics of ultrathin films (< 30 nm) differ from relatively thick films (100-150nm) with linear PS thin films aging more rapidly than the relatively “bulk-like” thick films. Ellipsometric measurements are used to characterize the physical aging rate of the films. The change in film thickness and refractive index as the films are held below the glass transition temperature (Tg) provides a simple measure of the physical aging. In this study, four different architectures (linear, comb, 4 arm star, and centipede) will be investigated. For each PS architecture, the aging rate will be determined for film thickness ranging ...


Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

All Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine ...


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of ...


Optimizing Electrospun Ceramic Nanofiber Strength Through Two-Step Sintering, Michael Ross Jun 2019

Optimizing Electrospun Ceramic Nanofiber Strength Through Two-Step Sintering, Michael Ross

Materials Engineering

Two-step sintering (TSS) consists of a high-temperature step and immediate cooling to a sintering temperature for an extended sintering time, where grain growth is suppressed by severe densification during the high-temperature step. TSS is adopted to enhance mechanical properties of electrospun ceramic nanofibers (CNFs), a class of porous ceramics used for environmental remediation, optoelectronics, and filtration. PVP and Ga(NO3)3 nanofiber mesh, provided by Lawrence Livermore National Laboratory, was shaped, oxidized, and two-step sintered to form a nanocrystalline β-Ga2O3 CNF tube using a high-temperature step of 1,000oC. Sintering temperatures and times varied ...


Degradation Of Emerging Contaminants By Advanced Oxidation Using Multi-Walled Carbon Nanotubes And Continuous Ozone Injection, Emily N. Miller Jun 2019

Degradation Of Emerging Contaminants By Advanced Oxidation Using Multi-Walled Carbon Nanotubes And Continuous Ozone Injection, Emily N. Miller

Master's Theses and Project Reports

With a growing population and continuous accumulation of pollutants, water resources worldwide are quickly being depleted. Drastic improvements need to be made in both water conservation and treatment. Advanced oxidation processes (AOPs) have been developed to go above and beyond the capabilities of traditional wastewater treatment facilities to eliminate emerging contaminants from our water systems. AOPs increase the generation of hydroxyl radicals (•OH) in oxidation reactions, which are less selective and more reactive than other oxidants, such as ozone, so they are more effective at degrading persistent compounds. This study explored an AOP that utilizes ozonated multi-walled carbon nanotubes (MWCNTs ...


Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in ...


Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun May 2019

Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun

Nanoscience and Microsystems ETDs

Many biological photonic structures in nature exhibit a significant degree of disorder within their periodic framework that enhances their optical properties. However, how such disorder contributes to the unique photonic characteristics is not yet fully understood. To facilitate studies on this topic, we investigated self-assembly of microspheres as a method to controllably introduce randomness to photonic structures. Specifically, we examined Langmuir-Blodgett assembly, a layer-by-layer fabrication technique. We developed and experimentally verified a model for the process and determined a condition of surface pressure and substrate pulling speed that corresponds to a maximum structural order in a layer. Along the trajectory ...


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin May 2019

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

Engineering and Applied Science Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions ...


Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese May 2019

Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese

Boise State University Theses and Dissertations

Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.

Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric ...


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties ...


Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane Apr 2019

Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane

Nanoscience and Microsystems ETDs

Nanopatterns found in nature demonstrate that macroscopic properties of a surface are tied to its nano-scale structure. Tailoring the nanostructure allows those macroscopic surface properties to be engineered. However, a capability-gap in manufacturing technology inhibits mass-production of nanotechnologies based on simple, nanometer-scale surface patterns. This gap represents an opportunity for research and development of nanoimprint lithography (NIL) processes. NIL is a process for replicating patterns by imprinting a fluid layer with a solid, nano-patterned template, after which ultraviolet cure solidifies the fluid resulting in a nano-patterned surface. Although NIL has been demonstrated to replicate pattern features as small as 4 ...


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The ...


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult ...


Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri Apr 2019

Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri

Electronic Thesis and Dissertation Repository

This research was focused on the production of zeolites from CFA throughutilizing ultrasound and microwave power. The initial conventional heating process of 6 h prior to microwave irradiation for samples with high solid-to-liquid (S/L) ratio (CFA mass/ NaOH solution volume) led to a higher yield of zeolite and decreased the synthesis time and consumption of energy,while keeping the high quality of the synthesized zeolite intact. The crystal growth of the nuclei generated over 6 h of conventional hydrothermal treatment was enhanced by the post-microwave heating. Ultrasound-assisted zeolitizationCFA was also applied in this research.

When ultrasound energy was applied ...


The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez Mar 2019

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez

Nanoscience and Microsystems ETDs

Nanoscale transport using the kinesin-microtubule (MT) biomolecular system has been successfully used in a wide range of nanotechnological applications including self-assembly, nanofluidic transport, and biosensing. Most of these applications use the ‘gliding motility geometry’, in which surface-adhered kinesin motors attach and propel MT filaments across the surface, a process driven by ATP hydrolysis. It has been demonstrated that active assembly facilitated by these biomolecular motors results in complex, non-equilibrium nanostructures currently unattainable through conventional self-assembly methods. In particular, MTs functionalized with biotin assemble into rings and spools upon introduction of streptavidin and/or streptavidin-coated nanoparticles. Upon closer examination of these ...


Electrochemical Modification Of Granular Activated Carbon And Carbon Nanofibers To Determine Effect On Adsorption, Jose E. Martinez Sanchez Mar 2019

Electrochemical Modification Of Granular Activated Carbon And Carbon Nanofibers To Determine Effect On Adsorption, Jose E. Martinez Sanchez

Theses and Dissertations

Granular activated carbon and carbon nanofiber samples were tested as is and electrochemically modified to determine the effect on adsorption. An electrochemical cell was used to modify the carbon samples. The samples were then used in bench bottle tests with 2,4-dinitrotoluene (DNT), brilliant blue (BB) dye, and methylene blue (MB) dye solutions and sampled over time intervals. An ultraviolet–visible spectrophotometer was used to analyze the results of the bottle bench tests. The results indicated that electrochemically modified coal-based carbons’ adsorption were improved 25% over the adsorption of the as is carbon samples prior to modification. The electrochemical modification ...


Axitinib Loaded Plga Nanoparticles For Age-Related Macular Degeneration, Priya P. Narvekar Mar 2019

Axitinib Loaded Plga Nanoparticles For Age-Related Macular Degeneration, Priya P. Narvekar

Graduate Theses and Dissertations

Despite of all the research going on for the treatment of ocular diseases, age-related macular degeneration (AMD) remains one of the serious vision threatening disease worldwide. Choroidal neovascularization, a pathophysiological characteristic of wet AMD, is the growth of anomalous blood vessels in the eye choroidal layer. Neovascularization is a key factor in AMD and thus anti-angiogenic therapy is beneficial in reducing the development of new abnormal blood vessels to prevent progression of AMD. Axitinib, multi-receptor tyrosine kinase inhibitor, is a small molecule that works by blocking vascular endothelial growth factor receptors (VEGFR) and platelet derived growth factor receptors (PDGFR) responsible ...


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the ...


Thermal Conductivity Of Complex Crystals, High Temperature Materials And Two Dimensional Layered Materials, Xin Qian Jan 2019

Thermal Conductivity Of Complex Crystals, High Temperature Materials And Two Dimensional Layered Materials, Xin Qian

Mechanical Engineering Graduate Theses & Dissertations

Thermal conductivity is a critical property for designing novel functional materials for engineering applications. For applications demanding efficient thermal management like power electronics and batteries, thermal conductivity is a key parameter affecting thermal designs, stability and performances of the devices. Thermal conductivity is also the critical material metrics for applications like thermal barrier coatings (TBCs) in gas turbines and thermoelectrics (TE). Therefore, thermal conductivities of various functional materials have been investigated in the past decade, but most of the materials are simple and isotropic crystals at low temperature. This is because the first-principles calculation is limited to simple crystals at ...


Photoinduced Hole Transfer And Recombination Dynamics Of A Cds Quantum Dot Sensitized Mononuclear Water Oxidation Catalyst, Orion Magruder Pearce Jan 2019

Photoinduced Hole Transfer And Recombination Dynamics Of A Cds Quantum Dot Sensitized Mononuclear Water Oxidation Catalyst, Orion Magruder Pearce

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Artificial photosynthesis represents a promising strategy to capture and store solar energy through the production of carbon neutral fuels. This process begins with absorption of a photon by a semiconductor creating an electron-hole pair which are then separated and used to drive reduction and oxidation reactions. CdS nanostructures are model light absorbers for studying these charge transfer reactions and have already demonstrated photoinduced electron transfer to drive a variety of reactions. However, there has been comparatively little progress in understanding how CdS nanostructures may be used to sensitize oxidation reactions such as water oxidation. To this end, we undertook a ...


Alternating Multiblock Polyethylenes With Associating Groups: Self-Assembled Nanoscale Morphologies And Ion Transport, Lu Yan Jan 2019

Alternating Multiblock Polyethylenes With Associating Groups: Self-Assembled Nanoscale Morphologies And Ion Transport, Lu Yan

Publicly Accessible Penn Dissertations

Single-ion conductors based on block copolymers (BCPs) are promising solid-state electrolytes for energy storage systems. Their ability to self-assemble into distinct nanostructures can provide both high ion transference numbers and strong mechanical integrity. Connecting the microphase-separated morphologies to the ion transport properties in BCP electrolytes as well as designing polymers to produce specific ion-conducting domain remain a critically important challenge.

Combining non-conducting polyethylene (PE) blocks that alternate with short strongly-interacting ionic blocks leads to a wide range of intriguing nanoscale phase-separated morphologies. Depending on the PE block lengths, these alternating multiblock copolymers exhibit amorphous or semicrystalline morphologies and their ionic ...


The Role Of Mentalizing In Information Propagation, Elisa C. Baek Jan 2019

The Role Of Mentalizing In Information Propagation, Elisa C. Baek

Publicly Accessible Penn Dissertations

What are the psychological drivers that lead to successful information propagation between communicators and receivers of shared messages? What factors lead communicators to share information with others, and receivers to be successfully influenced by the information? The current dissertation focuses on the role of mentalizing, or considering other people’s mental states, as one factor that leads to successful information propagation between communicators and receivers. Study 1 of this dissertation focused on the role of mentalizing in communicators of influence and provided behavioral evidence suggesting that mentalizing causally increases communicators’ likelihood to share information. Specifically, instructing information sharers to consider ...


Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi Jan 2019

Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi

Theses and Dissertations

The differential mobility classifier (DMC) is one of the core components in electrical mobility particle sizers for sizing sub-micrometer particles. Designing the DMC requires knowledge of the geometrical and constructional imperfection (or tolerance). Studying the effects of geometrical imperfection on the performance of the DMC is necessary to provide manufacturing tolerance and it helps to predict the performance of geometrically imperfect classifiers, as well as providing a calibration curve for the DMC. This thesis was accomplished via studying the cylindrical classifier and the parallel plate classifier. The numerical model was built using the most recent versions of COMSOL Multiphysics® and ...


Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa Jan 2019

Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa

Open Access Theses & Dissertations

Nanotechnology has a great potential in ensuring food production, security and safety globally. Over the past decade, research on the use of nanomaterials to supply nutrient elements and protect plants from pest and diseases has significantly increased. Tomato (Solanum lycopersicum) is one of the most consumed vegetables in the world and United State is one of its largest producers globally generating billions of dollars annually in revenue.. Tomato plants are affected worldwide by Fusarium wilt caused by Fusarium oxysporum f. sp. Lycopersici. There is growing concern about excessive use of conventional pesticides in controlling Fusarium and other diseases in tomato ...


Acoustofluidic Self-Assembly Of Colloidal Materials For Additive Manufacturing, Meghana Akella Jan 2019

Acoustofluidic Self-Assembly Of Colloidal Materials For Additive Manufacturing, Meghana Akella

Graduate Theses and Dissertations

Additive manufacturing techniques like 3D printing are being used extensively to produce custom-designed products in all walks of life- from household items to human organs to space shuttle parts. However, most additive manufacturing platforms use single materials or use extremely complicated processes to print multi-material products. Also, the microstructure of the materials cannot be controlled in many cases. The 3D printing sector is a USD 7 Billion market and is expected to grow at a rate of 25% per annum. At this rate of development, the use of printing multi-material components and creating programmable material structures will be crucial for ...


Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe Jan 2019

Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe

Theses and Dissertations

We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the ...


Investigation Of The Photophysical Properties Of Energy-Relevant Inorganic Nanocrystals, Brett Boote Jan 2019

Investigation Of The Photophysical Properties Of Energy-Relevant Inorganic Nanocrystals, Brett Boote

Graduate Theses and Dissertations

Environmental concerns over use of fossil fuels to generate power and the finite supply of these resources have driven major efforts for alternative energies. At the same time, the development of nanotechnology has blossomed to propose strategies and materials for renewable and less energy-intensive end-user devices, such as solar cells and LED lighting. Two examples of promising candidates for energy applications are germanium-based nanocrystals and lead halide perovskite nanocrystals.

Germanium-based materials have limited absorption efficiency due to their indirect band gap. To address this, germanium-tin alloy nanocrystals were synthesized to promote direct band gap character. A full characterization demonstrated tin ...


Engineering Magnetic Properties Of Nanoparticles For Biomedical Applications And Magnetic Thin Film Composite Heterostructures For Device Applications., Shivakumar Hunagund Jan 2019

Engineering Magnetic Properties Of Nanoparticles For Biomedical Applications And Magnetic Thin Film Composite Heterostructures For Device Applications., Shivakumar Hunagund

Theses and Dissertations

The motivation of this study is to investigate the size dependent properties of Gadolinium silicide nanoparticles and their potential applications in Biomedicine. We use two approaches in our investigation - size dependence and possible exchange interaction in a core-shell structure. Past results showed Gd5Si4 NPs exhibit significantly reduced echo time compared to superparamagnetic iron oxide nanoparticles (SPION) when measured in a 7 T magnetic resonance imaging (MRI) system. This indicates potential use of Gd5Si4 ferromagnetic nanoparticles as T2 contrast agents for MRI.

Until recently most contrast agents (CA) that are used in Magnetic Resonance Imaging ...


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation ...