Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Engineering

Elucidating Self-Assembly Of Semiconducting Polymers In The Presence Of A Low Molecular Weight Gelator, Madhubhashini Lakdusinghe Aug 2023

Elucidating Self-Assembly Of Semiconducting Polymers In The Presence Of A Low Molecular Weight Gelator, Madhubhashini Lakdusinghe

Theses and Dissertations

Semiconducting polymers with a conjugated backbone are important for energy storage, conversion, and biomedical field applications. The self-assembly process of these polymers in solutions depends on the polymer concentration and quality of the solvent. The electrical properties of thin films obtained from the solution phase depend on the self-assembled process. Thin films of conjugated polymer gels with percolating networks of self-assembled structures display improved electrical conductivities. In this dissertation, we studied the impact of the secondary gel matrix formed by a low molecular weight gelator, on the self-assembly of conjugated polymers, the preservation of assembled structures in dried gel films …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo Dec 2021

Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo

Boise State University Theses and Dissertations

Through the operation of a molecular beam epitaxy (MBE) machine, I worked on developing the homoepitaxy of high quality InAs with a (111)A crystallographic orientation. By tuning substrate temperature, we obtained a transition from a 2D island growth mode to step- ow growth. Optimized MBE parameters (substrate temperature = 500 °C, growth rate = 0.12 ML/s and V/III ratio ⩾ 40) lead to growth of extremely smooth InAs(111)A films, free from hillocks and other 3D surface imperfections. We see a correlation between InAs surface smoothness and optical quality, as measured by photoluminescence spectroscopy. This work establishes InAs(111)A as a platform …


Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch Dec 2021

Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch

Chemistry & Biochemistry Theses & Dissertations

Low molecular weight gelators (LMWGs) are small molecules that self-assemble in appropriate solvents to form three dimensional networks that immobilize the solvent, creating a supramolecular gel. The self-assembly of LMWGs occurs through non-covalent interactions such as hydrogen bonding, aromatic interactions, donor-acceptor interactions, Van der Waals interactions, hydrophobic forces, halogen bonding, etc. Due to self-assembly occurring through reversible non-covalent interactions, supramolecular gels can undergo a gel to solution transformation. Because of this, these materials can be sensitive to external stimuli such as temperature changes, pH changes, and other stimuli that effect non-covalent interactions. This makes the synthesis of LMWG’s an appealing …


Tensile-Strained Germanium Quantum Dots Grown On Indium Aluminum Arsenide (111)A And (110) By Molecular Beam Epitaxy, Kathryn Eva Sautter May 2021

Tensile-Strained Germanium Quantum Dots Grown On Indium Aluminum Arsenide (111)A And (110) By Molecular Beam Epitaxy, Kathryn Eva Sautter

Boise State University Theses and Dissertations

Molecular beam epitaxy (MBE) enables the growth of semiconductor nanostructures known as tensile-strained quantum dots (TSQDs). The highly tunable nature of TSQD properties means that they are of interest for a wide variety of applications including for infrared (IR) lasers and light-emitting diodes (LEDs), improved tunnel junction efficiency in multijunction solar cell technology, quantum key encryption, and entangled photon emission. In this project, I focus on one of the most technologically important materials, germanium (Ge). Ge has a high gain coefficient, high electron mobility, and low band gap: all excellent properties for optoelectronic applications. Until recently, these technological advantages were …


Co-Assembly Behavior Of Neutral And Zwitterionic Amphiphilic Block Copolymers In The Fabrication Of Glassy Polymer Vesicles, Elina Ghimire May 2020

Co-Assembly Behavior Of Neutral And Zwitterionic Amphiphilic Block Copolymers In The Fabrication Of Glassy Polymer Vesicles, Elina Ghimire

Honors Theses

Polymersomes, also known as polymer vesicles, are hollow capsules fabricated through the solution assembly of amphiphilic block copolymers. Polymer vesicles have garnered a great deal of interest in materials science because of their potential application in areas such as drug delivery, diagnostics and imaging, gene therapy, and as nanoreactors. The goal of this project is to understand the factors that affect the arrangement of triblocks in vesicle membrane via the study of the co-assembly behavior of linear amphiphilic triblocks with different hydrophilic blocks. We investigated the self- and co-assembly behavior of amphiphilic triblock copolymers with neutral hydrophilic blocks. Moreover, we …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Nanoscale Optical And Correlative Microscopies For Quantitative Characterization Of Dna Nanostructures, Christopher Michael Green Dec 2019

Nanoscale Optical And Correlative Microscopies For Quantitative Characterization Of Dna Nanostructures, Christopher Michael Green

Boise State University Theses and Dissertations

Methods to engineer nanomaterials and devices with uniquely tailored properties are highly sought after in fields such as manufacturing, medicine, energy, and the environment. The macromolecule deoxyribonucleic acid (DNA) enables programmable self-assembly of nanostructures with near arbitrary shape and size and with unprecedented precision and accuracy. Additionally, DNA can be chemically modified to attach molecules and nanoparticles, providing a means to organize active materials into devices with unique or enhanced properties. One particularly powerful form of DNA-based self-assembly, DNA origami, provides robust structures with the potential for nanometer-scale resolution of addressable sites. DNA origami are assembled from one large DNA …


New Methods For Understanding And Controlling The Self-Assembly Of Reacting Systems Using Coarse-Grained Molecular Dynamics, Stephen Thomas Aug 2018

New Methods For Understanding And Controlling The Self-Assembly Of Reacting Systems Using Coarse-Grained Molecular Dynamics, Stephen Thomas

Boise State University Theses and Dissertations

This research aims at developing new computational methods to understand the molecular self-assembly of reacting systems whose complex structures depend on the thermodynamics of mixing, reaction kinetics, and diffusion kinetics. The specific reacting system examined in this study is epoxy, cured with linear chain thermoplastic tougheners whose complex microstructure is known from experiments to affect mechanical properties and to be sensitive to processing conditions. Mesoscale simulation techniques have helped to bridge the length and time scales needed to predict the microstructures of cured epoxies, but the prohibitive computational cost of simulating experimentally relevant system sizes has limited their impact. In …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey Dec 2017

Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey

MSU Graduate Theses

Self-assembled nature of block copolymer (BCP) makes them ideal for emerging technologies in nanometer scale. The micro phase separation between two or more dissimilar polymer blocks of BCP leads to uniform periodic nanostructures of different domains of dimension in the range of 5-100 nm, good for the development of emerging microelectronic and optoelectronics devices. Molecular weight and chain architecture of each blocks govern the morphology evolution; gives different structure like spherical, micelles, lamellae, cylindrical, gyroid etc. The morphology evolution of BCP nanostructure also depends on different external factors as well. In the first work of this thesis, three external factors …


Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena Nov 2017

Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena

Doctoral Dissertations

Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for electronic devices. The introduction of well-defined nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. A crystallization method for generating metastable solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found that the crystallization kinetics is faster with increasing P3HT molecular weight and concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow vertically in a face-on …


Thermodynamic And Dynamic Models For Directed Assembly Of Small Ensembles Of Colloidal Particles, Raghuram Thyagarajan Nov 2016

Thermodynamic And Dynamic Models For Directed Assembly Of Small Ensembles Of Colloidal Particles, Raghuram Thyagarajan

Doctoral Dissertations

Self and directed assembly of finite clusters (10 to 1000) of colloidal particles into crystalline objects is an emerging area of scientific interest that finds applica- tions in manufacturing of photonic crystals and other meta-materials. Such assembly problems are also of fundamental scientific interest because they involve thermodynamically small systems, with a number of particles that is far below the bulk limit. Robust methods for assembling defect-free target structures will ultimately require reduced-dimension process models that link the particle-level dynamics of the colloids to the actuator states. We have developed a three-part strategy for developing such process models. First, we …


Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure Jan 2016

Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure

Theses and Dissertations--Chemical and Materials Engineering

This dissertation addresses the synthesis mechanism of mesoporous titania thin films with 2D Hexagonal Close Packed (HCP) cylindrical nanopores by an evaporation-induced self-assembly (EISA) method with Pluronic surfactants P123 and F127 as structure directing agents, and their applications in photovoltaics and lithium ion batteries. To provide orthogonal alignment of the pores, surface modification of substrates with crosslinked surfactant has been used to provide a chemically neutral surface. GISAXS studies show not only that aging at 4°C facilitates ordered mesostructure development, but also that aging at this temperature helps to provide orthogonal orientation of the cylindrical micelles which assemble into an …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …


Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae Aug 2015

Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae

Doctoral Dissertations

Surface tension generally plays a negligible role on macroscopic scales, but it is often the dominant force on nanometer to micrometer length-scales. The efforts of this dissertation are mainly focused on understanding the role that surface tension plays on sub-millimeter scale objects, especially on soft material systems, and how to utilize this phenomenon to assemble and deform objects. This dissertation addresses several phenomena of nano-and micron-sized objects at fluid interfaces. For nano-scale objects, amphiphilic block copolymer chains were used to explore interfacial behaviors due to their enhanced stability, mechanical properties, and tunability compared to other interfacially active materials such as …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …


Evaporation-Induced Formation Of Well-Ordered Surface Patterns On Polymer Films, Wei Sun Jan 2015

Evaporation-Induced Formation Of Well-Ordered Surface Patterns On Polymer Films, Wei Sun

Theses and Dissertations--Chemical and Materials Engineering

Various techniques of fabricating surface patterns of small scales have been widely studied due to the potential applications of surface patterns in a variety of areas. It is a challenge to fabricate well-ordered surface area efficiently and economically. Evaporation-induced surface patterning is a promising approach to fabricate well-ordered surface patterns over a large area at low cost. In this study, the evaporation-induced surface patterns with controllable geometrical characteristics have been constructed. The dewetting kinetics on deformable substrate is also investigated.

Using simple templates to control the geometry and the evaporation behavior of a droplet of volatile solvent, various gradient surface …


Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu Apr 2014

Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu

Doctoral Dissertations

Block copolymers (BCP) are a unique class of polymers, which can self-assemble into ordered microdomains with sizes from 3 nm to about 50 nm making BCPs an appealing meso-scale material. In thin films, arrays of BCP microdomains with longrange lateral order can serve as ideal templates or scaffolds for patterning nano-scale functional materials and synthesizing nanostructured materials with size scales that exceed the reach of photolithography. Among many annealing methods, solvent vapor annealing (SVA) is a low-cost, highly efficient way to annihilate defects in BCP thin films and facilitates the formation of highly ordered microdomains within minutes. Directing the self-assembly …


Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri Feb 2013

Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri

Open Access Dissertations

Two diverse projects illustrate the application of various materials characterization techniques to investigate the structure and properties of nanostructured functional materials formed in both bulk as well as in solutions. In the first project, ordered magnetic nanostructures were formed within polymer matrix by novel metallopolymers. The novel metal-functionalized block copolymers (BCPs) enabled the confinement of cobalt metal ions within nanostructured BCP domains, which upon simple heat treatment resulted in room temperature ferromagnetic (RTFM) materials. On the contrary, cobalt functionalized homopolymer having similar chemical structure and higher loading of metal-ion are unstructured and exhibited superparamagnetic (SPM) behavior at room temperature. Based …


Structural Dna Origami: Engineering Supermolecular Self-Assembly For Nanodevice Fabrication, Craig Marshal Onodera May 2012

Structural Dna Origami: Engineering Supermolecular Self-Assembly For Nanodevice Fabrication, Craig Marshal Onodera

Boise State University Theses and Dissertations

Two challenges encountered in nanotechnology are the ability to create nanostructures inexpensively and the ability to arrange nanomaterials with a precision commensurate with their size. In nature, nanostructures are created using a bottom-up approach, whereby molecules hierarchically self-assemble into larger systems. Similarly, structural DNA nanotechnology harnesses the programmability, specificity, and structural integrity of DNA to engineer synthetic, self-assembled materials. For example, during scaffolded DNA origami, a long single stranded DNA polymer is artificially folded into nanostructures using short oligonucleotides. Once folded, two- and three-dimensional nanostructures may be decorated with proteins, metallic nanoparticles, and semiconductor quantum dots. Using gold nanoparticles and …


Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon May 2009

Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon

Graduate Theses and Dissertations

There is increasing interest in quantum dot (QD) structures for a plethora of applications, including optoelectronic devices, quantum computing and energy harvesting. While strain driven surface diffusion via stranski-krastanow (SK) method has been commonly used to fabricate these structures, a more recent technique, droplet epitaxy (DE) does not require mismatch strain and is therefore much more flexible in the combination of materials utilized for the formation of QDs.

As reported in this work, a hybrid approach that combines DE and SK techniques for realizing lateral ordering of QDs was explored. First, the droplet formation of various materials was discussed and …


Synthesis And Interfacial Behavior Of Functional Amphiphilic Graft Copolymers Prepared By Ring-Opening Metathesis Polymerization, Kurt E. Breitenkamp Feb 2009

Synthesis And Interfacial Behavior Of Functional Amphiphilic Graft Copolymers Prepared By Ring-Opening Metathesis Polymerization, Kurt E. Breitenkamp

Open Access Dissertations

This thesis describes the synthesis and application of a new series of amphiphilic graft copolymers with a hydrophobic polyolefin backbone and pendent hydrophilic poly(ethylene glycol) (PEG) grafts. These copolymers are synthesized by ruthenium benzylidene-catalyzed ring-opening metathesis polymerization (ROMP) of PEG-functionalized cyclic olefin macromonomers to afford polycyclooctene- graft -PEG (PCOE- g -PEG) copolymers with a number of tunable features, such as PEG graft density and length, crystallinity, and amphiphilicity. Macromonomers of this type were prepared first by coupling chemistry using commercially available PEG monomethyl ether derivatives and a carboxylic acid-functionalized cycloctene. In a second approach, macromonomers possessing a variety of PEG …


Self-Assembly And Characterization Of Germanium Quantum Dots On Silicon By Pulsed Laser Deposition, Mohammed S. Hegazy Jul 2007

Self-Assembly And Characterization Of Germanium Quantum Dots On Silicon By Pulsed Laser Deposition, Mohammed S. Hegazy

Electrical & Computer Engineering Theses & Dissertations

Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2×1) by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. Several films of different thicknesses were grown at a substrate temperature of 400°C using a Q-switched Nd:YAG laser (λ = 1064 mu, 40 ns pulse width, 23 J/cm2 fluence, and 10 Hz repetition rate). At low film thicknesses, but clusters that are faceted by different planes, depending on their height, are observed after the completion of the wetting layer. With increasing …


Self-Assembled Lipid Tubules: Structures, Mechanical Properties, And Applications., Yue Zhao Jan 2007

Self-Assembled Lipid Tubules: Structures, Mechanical Properties, And Applications., Yue Zhao

Electronic Theses and Dissertations

Self-assembled lipid tubules are particularly attractive for inorganic synthesis and drug delivery because they have hollow cylindrical shapes and relatively rigid mechanical properties. In this thesis work, we have synthesized lipid tubules of 1,2-bis(tricosa-10,12-dinoyl)-sn-glycero-3-phosphocholine (DC8,9PC) by self-assembly and polymerization in solutions. We demonstrate for the first time that both uniform and modulated molecular tilt orderings exist in the tubule walls, which have been predicted by current theories, and therefore provide valuable supporting evidences for self-assembly mechanisms of chiral molecules. Two novel methods are developed for studying the axial and radial deformations of DC8,9PC lipid tubules. Mechanical properties of DC8,9PC tubules …


Integration Of Micro Nano And Bio Technologies With Layer -By -Layer Self -Assembly, Dinesh Shankar Kommireddy Oct 2005

Integration Of Micro Nano And Bio Technologies With Layer -By -Layer Self -Assembly, Dinesh Shankar Kommireddy

Doctoral Dissertations

In the past decade, layer-by-layer (LbL) nanoassembly has been used as a tool for immobilization and surface modification of materials with applications in biology and physical sciences. Often, in such applications, LbL assembly is integrated with various techniques to form functional surface coatings and immobilized matrices. In this work, integration of LbL with microfabrication and microfluidics, and tissue engineering are explored. In an effort to integrate microfabrication with LbL nanoassembly, microchannels were fabricated using soft-lithography and the surface of these channels was used for the immobilization of materials using LbL and laminar flow patterning. Synthesis of poly(dimethyldiallyl ammonium chloride)/poly(styrene sulfonate) …


Development Of Palladium Nanowires, Chuanding Cheng Oct 2005

Development Of Palladium Nanowires, Chuanding Cheng

Doctoral Dissertations

Inherent limitations of traditional lithography have prompted the search for means of achieving self-assembly of nano-scale structures and networks for the next generation of electronic and photonic devices. The nanowire, the basic building block of a nanocircuit, has recently become the focus of intense research. Reports on nanowire synthesis and assembly have appeared in the scientific literature, which include Vapor-Liquid-Solid mechanism, template-based electrochemical fabrication, solvothermal or wet chemistry, and assembly by fluid alignment or microchannel networks. An ideal approach for practical application of nanowires would circumvent technical and economic constraints of templating. Here we report on the self-assembly of highly-ordered …


Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel Oct 2004

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel

Doctoral Dissertations

Thin wall microcapsules were formed via Layer-by-Layer Self-Assembly of alternate adsorption of oppositely charged polyelectrolyte on microcores. After the core dissolution, empty polymeric shells with 20–25 nm thick walls were obtained. These microcapsules were loaded with Myoglobin, Hemoglobin and Glucose Oxidase by opening capsule pores at low pH and closing them at higher pH. The native structure of the enzyme was not affected due to different treatments. Biocompatible nanoshells were also prepared for encasing DNA. Using the same Layer-by-Layer Self-Assembly approach nanoparticle were constructed containing DNA as one of the layers. The nanoparticles of different architecture were used to deliver …