Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Materials Science and Engineering

Nanoparticles

Institution
Publication Year
Publication

Articles 1 - 30 of 54

Full-Text Articles in Engineering

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq Jan 2023

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq

LSU Doctoral Dissertations

Colloids are a ubiquitous class of materials composed of microscopic particles suspended in a continuous phase which are found in everyday products and in nature. Colloids are also useful models for studying the spontaneous arrangement of matter from individual building blocks to mesophases. Standard treatment of colloid science is based on the assumption of equilibrium conditions, as defined in traditional thermodynamics. However, novel assembly mechanisms and motility are unlocked by pushing colloids away from equilibrium using external energy. In addition, many colloids in nature and in industrial applications exchange energy and mass with the surrounding environment thus behaving in a …


A Study On Effect Of Manufacturing Parameters On Morphology Of A356 Aluminum Foam, Nikhil Nanabhau Mahajan May 2022

A Study On Effect Of Manufacturing Parameters On Morphology Of A356 Aluminum Foam, Nikhil Nanabhau Mahajan

All Theses

Metal foams have shown an excellent promise for usage as multifunctional material concerning research & development in the last 20 years. They provide remarkable mechanical as well as physical properties being lightweight. Open-cell metal foams have already been used in sound and noise absorption. Open-cell metal foams are outstanding for use in heat exchangers, filters, and many more applications, while closed-cell foams show excellent characteristics in impact energy absorptions. Closed-cell metal foams have higher energy absorption than their solid parent metal as they convert most of the impact energy into deformation energy. Metal foams have been used as prominent safeguard …


Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma Jan 2022

Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma

Graduate Theses, Dissertations, and Problem Reports

Additive manufacturing (AM) fabricated oxide dispersion strengthened (ODS) alloys are given high expectations for critical structural components such as the first stage turbine blade for their excellent creep strength and oxidation resistance compared to superalloys. However, the powder feedstock processing is still an open question since current state-of-the-art processes are not capable of achieving ultrafine strengthening elements such as Y2O3 in powder which leads to agglomeration issues in as-consolidated alloys. In this research, the oxidation behavior and stability of ultrafine oxide in AM-printed alloys using mechanically alloyed powders were evaluated at 1100 oC. In addition, a …


Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez Dec 2020

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez

Boise State University Theses and Dissertations

The growing demand for clean water supplies is driving the need for an innovative approach of water desalination. Developing a method for treating water with high salinities is possible with membrane distillation (MD). Additionally, MD is very attractive for pairing with solar energy due to the low temperature requirements. The integration of a membrane distillation system with a photovoltaic (PV) system will result in the co-production of electricity and clean water, thereby improving the economics of MD. Such a hybrid system will directly absorb thermal energy in the membrane for desalination while taking advantage of the spectrally selective nature of …


Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia Aug 2020

Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia

Theses & Dissertations

Current materials used for facial prostheses are far from being desirable, and improved properties with “skin-like” feel are needed. This study evaluates property changes induced by sequential additions of uncoated and hydrophobic-coated nano-SiO2 to polydimethylsiloxane (PDMS) and compares them with those measured for conventional submicron SiO2-filled materials. Each filler type was sequentially added to vinyl-terminated PDMS at 0%, 0.5%, 5%, 10%, and 15% by weight. Tensile, tear, Durometer hardness, translucency and viscoelastic properties were evaluated, with hardness and translucency also evaluated following 3000 hours of outdoor weathering. Results demonstrated that 15% coated nano-SiO2-filled PDMS materials …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang Jun 2020

Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang

USF Tampa Graduate Theses and Dissertations

This thesis includes data and discussion about the technique of metal-enhanced fluorescence (MEF) to lower the detection limit of carcinoembryonic antigen (CEA). The detection limit goes down to 100pg/mL level when using MEF substrate made by rapid thermally annealed silver film covered by silica, which has great promise in diagnosing certain types of cancer that uses CEA as detection biomarker, such as pancreatic cancer and colon cancer. To further address the issue of background noises from non-specifically bound proteins (NSB) in complex media, such as plasma, serum, urine and blood, MEF is integrated with surface acoustic wave (SAW) streaming in …


Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman May 2020

Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman

Chancellor’s Honors Program Projects

No abstract provided.


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup Jan 2020

Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup

Graduate Research Theses & Dissertations

Despite optics and refraction being among the oldest scientific principles, material limitations have prevented scientists from taking full advantage of the potential this technology holds. Indeed, films with designer optical properties have potential for use in exotic cloaking architectures, advanced waveguides, and precise optical biosensors. This thesis focuses on the fabrication methodology for making thin films with refractive index tuned to a desired value through self-assembly of amorphous nanoparticle films made of organosilicate materials. The inclusion of a slowly evaporating polymer phase along with the organosilicate nanoparticles results in nanopores formed within the film, which effectively reduce the film’s refractive …


Electrospun Fibers With Smart Delivery Of Therapeutic Agents, Zahra Mahdieh Jan 2020

Electrospun Fibers With Smart Delivery Of Therapeutic Agents, Zahra Mahdieh

Graduate Student Theses, Dissertations, & Professional Papers

Electrospinning is the most widely studied technique of producing fibers. Delivery of nanoparticles and therapeutic agents from electrospun fibers have potential uses in various fields including drug delivery, filtration, and cosmetics. However, controlling the delivery rate remains the main challenge. In the current study, core-shell structure fibers were developed with zinc oxide nanoparticles applied in the shell composition to improve the pore structure (release pathway) and mechanical stability. Fine-tuned delivery rates were achieved via loading different sizes of silver nanoparticles (Ag NP) inside the fiber core. In vitro drug release assays showed fast, slow, and intermediate delivery rates of 20 …


Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu Jan 2019

Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu

Williams Honors College, Honors Research Projects

This work investigates the use of two different polyols, xylitol (Xyl) and erythritol (Ery), in conjunction with boron nitride (BN) aerogels, for the purpose of creating thermally conductive composites. While the BN filler in Xyl composites achieved a high anisotropic thermal conductivity of up to 4.53 W/m-K at 18.2 weight percent filler loading, they do not exhibit good phase-change material qualities due to a low solidification enthalpy even at low cooling rates. Alternatively, the BN-Ery composites have shown promising results with a solidification enthalpy of 225.14 J/g and a melting enthalpy of 385.84 J/g at a heat rate of 5 …


Incorporation Of Silica Nanoparticles Into The Underlayer Of Pda/Ptfe Thin Coatings, Adedoyin Abe Aug 2018

Incorporation Of Silica Nanoparticles Into The Underlayer Of Pda/Ptfe Thin Coatings, Adedoyin Abe

Mechanical Engineering Undergraduate Honors Theses

Polytetrafluoroethylene (PTFE) is one of the most low friction and corrosion resistant solid lubricants. Prior studies have shown that a polydopamine (PDA) underlayer enhances the durability of PTFE thin coating. In this study, 100, 200, and 300 µL of aqueous silica nanoparticle (NP) solutions were added to the PDA deposition solution. The durability and coefficient of friction of PDA/PTFE thin coatings on stainless steel substrates are investigated with and without incorporating the silica NPs. The coatings were tested in dry contact conditions using a Universal Mechanical Tester (UMT) with a ball-on-flat configuration in a reciprocating motion. It was found that …


Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow May 2018

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow

Chemical Engineering Undergraduate Honors Theses

Iron-nickel bimetallic electrocatalysts have recently emerged as some of the best candidates for the oxygen evolution reaction (OER) in alkaline electrolyte. Understanding the effects of composition and morphology of iron-nickel nanoparticles is crucial for optimization and enhanced electrocatalyst performance. Both physical surface area and electrochemical surface area (ECSA) are functions of morphology. In this study, four different iron-nickel nanoparticle catalysts were synthesized. The catalysts were varied based on morphology (alloy versus core-shell) and composition (low, medium, and high stabilizer concentration). Brunauer-Emmett-Teller (BET) surface area analysis was conducted on three of the synthesized iron-nickel nanoparticles using a physisorption analyzer while electrochemical …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane May 2017

Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane

Graduate Theses and Dissertations

This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that …


Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams Jan 2017

Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams

Theses and Dissertations

Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet …


Synthesis Of Discrete Transition Metal (Ni, Fe, Co, Mn) Phosphide Nanoparticles: Compositional Effect On Catalytic And Magnetic Properties, Da Li Jan 2017

Synthesis Of Discrete Transition Metal (Ni, Fe, Co, Mn) Phosphide Nanoparticles: Compositional Effect On Catalytic And Magnetic Properties, Da Li

Wayne State University Dissertations

This dissertation research is focused on the synthesis, characterization of binary and ternary transition metal (Ni, Co, Fe, Mn) phosphide nanomaterials and their catalytic and magnetic properties.

A phase-control strategy enabling the arrested-precipitation synthesis of nanoparticles of Ni5P4 and NiP2 is presented. The composition and purity of the product can be tuned by changing key synthetic levers, including the metal precursor, the oleylamine (OAm) and Trioctylphosphine (TOP) concentrations, temperature, time and the presence or absence of a moderate temperature soak step to facilitate formation of Ni and/or Ni-P amorphous nanoparticle intermediates.

New CoxFe2-xP nanoparticles (0 ≤ x ≤ 2), Co2-xMnxP …


Study Of Stability And Thermal Conductivity Of Nanoparticles In Propylene Glycol, Sumit Mahajan Jan 2017

Study Of Stability And Thermal Conductivity Of Nanoparticles In Propylene Glycol, Sumit Mahajan

All Graduate Theses, Dissertations, and Other Capstone Projects

This thesis studied the effects of gravity induced settling, thermophoresis and Brownian motion on the thermal conductivity of the Aluminum Oxide (Al2O3) nanofluids. The base fluid was propylene glycol. The effects were studied by making three samples with volumetric percentages of 0.2 %, 2% and 3% Al2O3 in propylene glycol. Sets of 22 experiments were conducted over time to understand the behavior of settling. All samples were manually mixed each time the experiment was conducted. A Thermtest Transient Plane Source TPS 500S was used to measure the thermal conductivity. Volumetric percentages and diameters of nanoparticle were chosen so that the …


Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter Aug 2016

Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter

Electronic Thesis and Dissertation Repository

North American (NA) ginseng is a widely used medicinal plant. Polysaccharides (PS), the major medicinal fractions derived from NA ginseng root, have been shown several biological activities including anti-carcinogenic, anti-aging, immunostimulatory and antioxidant activity. This work focused on nanoprocessing of ginseng PS for enhancing their immunostimulation. Herein, we have developed a novel microfluidic approach to synthesize ginseng PS nanoparticles (NPs) from NA ginseng root. The microfluidics was found to provide unimodal PS spheres down to 20 nm with very narrow particle size distributions. In addition, the immunostimulating effect was investigated on Murine macrophage cell lines, with the results revealing an …


Life Cycle Assessment And Comparison Of Magnesium Oxide Nanoparticles Prepared By Aqueous And Microwave Synthesis Methods, Jesse Cartland Jun 2016

Life Cycle Assessment And Comparison Of Magnesium Oxide Nanoparticles Prepared By Aqueous And Microwave Synthesis Methods, Jesse Cartland

Materials Engineering

Abstract: Magnesium oxide nanoparticles are being used increasingly as catalysts for organic synthesis, fuel oil additives, and CO2 adsorbents. There are many ways to produce magnesium oxide nanoparticles, but there is little information available regarding the environmental costs of production. As demand for environmentally friendly materials increases, it is important to understand environmental impact differences between various production methods. This study will compare the differences in embodied energy and global warming potential (GWP) between two synthesis methods: microwave combustion synthesis (microwave synthesis) and oxidation of magnesium hydroxide (aqueous synthesis). The resulting nanoparticles were characterized using scanning electron microscopy (SEM), …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Nanostructured Organic/Inorganic Semicondutor Photovoltaics: Investigation On Morphology And Optoelectronics Performance, Aruna Wanninayake May 2016

Nanostructured Organic/Inorganic Semicondutor Photovoltaics: Investigation On Morphology And Optoelectronics Performance, Aruna Wanninayake

Theses and Dissertations

Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation …


Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes Jan 2016

Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes

Theses and Dissertations--Chemical and Materials Engineering

Polymers have deep roots as drug delivery tools, and are widely used in clinical to private settings. Currently, however, numerous traditional therapies exist which may be improved through use of polymeric biomaterials. Through our work with infectious and oxidative stress disease prevention and treatment, we aimed to develop application driven, enhanced therapies utilizing new classes of polymers synthesized in-house. Applying biodegradable poly(β-amino ester) (PBAE) polymers, covalent-addition of bioactive substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug delivery systems. Further, through variation of polymer ingredients and conditions, we were able to tune degradation rates, release profiles, cellular …


Engineering Gold Nanoparticles And Their Use To Control Nucleation, Pedram Jahanian Jan 2016

Engineering Gold Nanoparticles And Their Use To Control Nucleation, Pedram Jahanian

Wayne State University Dissertations

This study focuses on fabrication of hybrid nanostructures using gold nanoparticles (AuNP) as seeds and partially oxidized potassium tetracyanoplatinate, known as Krogmann’s salt (KCP), and later this method will be employed to manufacture a prototype sensor for detecting different vapors. Nanocrystals are synthesized using electrochemical method with the aim to have more control over the size and shape of the charge transfer salt based on the seed mediated nucleation method. AuNP seeds are prepared on highly ordered pyrolytic graphite (HOPG) substrate by the electrocrystallization method. An aqueous solution of 0.05 to 1 mM Hydrogen tetrachloroaurate (HAuCl4) with 0.1 mM (Potassium …


Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam Jan 2016

Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam

Legacy Theses & Dissertations (2009 - 2024)

Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet …


In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer Nov 2015

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer

USF Tampa Graduate Theses and Dissertations

Improvement of novel electronic devices is possible by tailor-designing the electronic structure at device interfaces. Common problems observed at interfaces are related to unwanted band alignment caused by the chemical diversity of interface partners, influencing device performance negatively. One way to address this problem is by introducing ultra-thin interfacial dipole layers, steering the band alignment in a desired direction. The requirements are strict in terms of thickness, conformity and low density of defects, making sophisticated deposition techniques necessary. Atomic layer deposition (ALD) with its Ångstrom-precise thickness control can fulfill those requirements.

The work presented here encompasses the implementation of an …


Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan Aug 2015

Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan

Theses and Dissertations

Tin, an anode material with a high capacity for lithium-ion batteries, has poor cyclic performance because of the high volume expansion upon lithiation. Based on a literature review of the applications of lithium-ion batteries and current research progress of the tin-based anode materials for lithium-ion batteries, we developed a method to synthesize hollow TiO2 spheres with tin nanoparticles anchored on the inner surface of the TiO2 shell. Such a unique tin/TiO2 composite alleviates the volume change of tin–based anode materials in charge-discharge processes. SnCl2·2H2O (Tin (II) chloride dihydrate) and titanium (IV) isopropoxide (TIPT) were used as the Sn source and …