Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Materials Science and Engineering

Additive Manufacturing

Institution
Publication Year
Publication

Articles 1 - 30 of 57

Full-Text Articles in Engineering

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge Jan 2024

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge

Dissertations, Master's Theses and Master's Reports

Every year, thousands of cast-steel railcar couplers suffer from corrosion-initiated fatigue cracking in similar areas of the coupler’s knuckle; between 2015 and 2018 about 90,000 knuckles were replaced, otherwise these couplers would have been at risk for unexpected failures. These types of couplers have been common in industrial use as early as 1932, hence it is desirable for a countermeasure to the fatigue cracking that does not involve significantly altering the geometry or casting process. Wire arc additive manufacturing (WAM) is a developing technology which boasts the ability to produce complex near-net-shape components; however, less attention has been paid to …


Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang Dec 2023

Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang

Doctoral Dissertations

This work details the research into the 3D Printing, also known as Additive Manufacturing (AM), of both impermanent and permanent magnets. This work also details the research in enabling such AM magnets in electrical machine applications, primarily motors and generators. The AM processes of many types of magnets are described in detail. The material properties of such AM magnets are also described. The two main types of AM magnets that are discussed in detail are AM NdFeB, and AM Silicon Steel. The implementation of AM NdFeB as rotor magnets, and the implementation of AM Silicon Steel as rotor and stator …


An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding Nov 2023

An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding

LSU Doctoral Dissertations

Additive Manufacturing (AM) has gained attention in recent years due to its unique capabilities in the fabrication of complex parts. As with any new research, there is still a lack of sufficient understanding in the field of additive manufacturing, and further investigation is needed to solve existing problems. Ultimately, the aim is to enable the widespread use of AM components across various industries.

Chapter One provides a brief introduction to the background and current bottlenecks of additive manufacturing technology. Chapter two focuses on the development of high-strength 7075 aluminum alloy (Al7075) for Fused Deposition Modeling and Sintering (FDMS) technology. Al7075 …


Additive Manufacturing Of Stretchable Strain Sensors: Fabrication, Optimization And Application, John Nady Shihat Bastawrous Jun 2023

Additive Manufacturing Of Stretchable Strain Sensors: Fabrication, Optimization And Application, John Nady Shihat Bastawrous

Theses and Dissertations

In this project, a novel strain sensor design is fabricated employing different additive manufacturing techniques. The spring sensor's primary material is PLA-Like resin with a nanocomposite encapsulation layer as the functional material. The main principle of Straining the sensors results in a change in resistivity as the distances among the conductive carbon particles change according to the strain applied.

Sensor fabrication consists of two parts: spring manufacturing and development of nanocomposite encapsulation The nanocomposite matrix is developed through the dispersion of Graphene and Carbon nanotubes in Thermoplastic Polyurethane through sonication and magnetic hotplate stirring. While the spring itself is manufactured …


Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn Jun 2023

Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn

Materials Engineering

This project aimed to improve the mechanical properties of as-printed additively manufactured Inconel 718 samples using a heat treatment usually used for cast and wrought Inconel 718. The mechanical properties sought to be optimized were yield strength, ultimate tensile strength, elongation, and reduction in area. The property goals were to match or exceed those of cast and heat treated Inconel 718. Wire-fed electron beam direct energy deposition (DED) was used to manufacture the samples, which were then heat treated using the AMS 5663 standard in an inert atmosphere. The samples were then tested in tension to obtain data on their …


A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone May 2023

A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone

Doctoral Dissertations

5Additive Manufacturing (AM) is defined in the American Society for Testing and Materials (ASTM) standard F2792 as “a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies. It provides an advanced method for building complex geometries and parts for high performance with a significant cost savings. 55It’s advantages include the reduced need for tools and molds commonly used in manufacturing, a large reduction in wasted material, much shorter manufacturing cycles for the building of hardware, and its uniquely inherent ability to produce much more complex shapes. …


Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco May 2023

Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco

Doctoral Dissertations

The design of Al alloys has become an important topic in Additive Manufacturing (AM). The adoption of Al alloys to AM has been difficult because traditional alloys are prone to processing related defects such as solidification cracking. The Al-10Si-Mg alloy was initially adopted because of its resistance to solidification cracking. However, the Al-10Si-Mg alloy has reduced tensile properties especially at high temperatures, where the silicon phase coarsens readily. Therefore, efforts have been made to design new Al alloys that can take advantage of the AM processing. The goal of new alloys is to optimize based on rapid solidification conditions, while …


Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes May 2023

Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes

Graduate Theses & Non-Theses

Since its invention in 1981, the cold spray (CS) additive manufacturing (AM) process has been studied and optimized to produce well-adhered, dense material coatings. CS can operate at a wide range of temperatures if the feed material remains in a solid state. Copper and zinc were studied to characterize and understand the effects of heating element voltage, travel speed, and standoff distance on deposit porosity, grain size, microhardness, and coating thickness. Samples were sprayed on 3.2 mm x 25 mm x 150 mm 6061 aluminum substrates. Sections were taken from the middle of the samples to represent steady-state conditions. Sample …


An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez Jan 2023

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New Dec 2022

Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New

All Theses

This research focuses on improving the quality of Fused Filament Fabrication (FFF) 3D printing by using fractal noise to mask certain print artifacts (e.g. layer lines and stair-stepping). The use of textures is quite common in digital sculpting for aesthetic reasons. This study focuses on finding specific textures that minimize visible 3D print artifacts.


A Machine Learning Approach To Robotic Additive Manufacturing Of Uv-Curable Polymers Using Direct Ink Writing, Luis A. Velazquez Nov 2022

A Machine Learning Approach To Robotic Additive Manufacturing Of Uv-Curable Polymers Using Direct Ink Writing, Luis A. Velazquez

LSU Master's Theses

This thesis presents the design and implementation of a robotic additive manufacturing system that uses ultraviolet (UV)-curable thermoset polymers. Its design considers future applications involving free-standing 3D printing by means of partial UV curing and the fabrication of samples that are reinforced with fillers or fibers to manufacture complex-shape objects.

The proposed setup integrates a custom-built extruder with a UR5e collaborative manipulator. The capabilities of the system were demonstrated using Anycubic resin formulations containing fumed silica (FS) at varying weight fractions from 2.8 to 8 wt%. To fully cure the specimens after fabrication, a UV chamber was used. Then, measurements …


3d Printed Multicomponent Polymer Based Materials Via Hybrid Filaments: Fabrication And Characterization, Erik Antonio Aug 2022

3d Printed Multicomponent Polymer Based Materials Via Hybrid Filaments: Fabrication And Characterization, Erik Antonio

All Dissertations

Additive manufacturing, also known as 3D printing, promises a manufacturing revolution for both industry and academic circles. One of the most widely used method of 3D printing is Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF), which requires a thermoplastic filament to be directed towards a heating block and then deposited via extrusion layer by layer to produce a finished part. However, there are significant issues with this technology, mainly a limitation on the materials available for use and mechanical property deficiencies when compared to traditional manufacturing. These issues are brought about by the temperature limited nature of the …


In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake Jun 2022

In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake

Master's Theses

The world of additive manufacturing revolves around speed and repeatability. Inherently, the process of 3D printing is plagued with variability that fluctuates with every material and parameter modification. Without proper qualification standards, processes can never become stable enough to produce parts that may be used in aerospace, medical, and construction industries. These industries rely on high quality metrics in order to protect the lives of those who may benefit from them. To establish trust in a process, all points of variation must be controlled and accounted for every part produced. In instances where even the best process controls are enacted, …


Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson May 2022

Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson

Electronic Theses and Dissertations

Bound Metal Deposition (BMD) is a novel metal additive manufacturing technology in which a metal powder-binder composite paste is layer-wise extruded to form a part, which is then debound and sintered into a solid metal part. Although promising, BMD suffers from shrinkage-induced warpage and an inability to produce fine length scale features. This research addresses these problems by: (1) characterizing warpage of planar parts, and (2) developing a novel laser ablated process to create fine length scale features. First, a 12-factor resolution IV fractional-factorial design of experiments (DOE) was conducted to determine the warpage of planar parts as a function …


Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock May 2022

Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock

Electronic Theses and Dissertations

This work focuses on evaluating different modeling approaches and model parameters for thermoplastic AM, with the goal of informing more efficient and effective modeling approaches. First, different modeling approaches were tested and compared to experiments. From this it was found that all three of the modeling approaches provide comparable results and provide similar results to experiments. Then one of the modeling approaches was tested on large scale geometries, and it was found that the model results matched experiments closely. Then the effect of different material properties was evaluated, this was done by performing a fractional factorial design of experiments where …


Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar Jan 2022

Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar

Williams Honors College, Honors Research Projects

The purpose of this research is to examine the effects of recycling PLA filament for 3D printing on its material properties. After examining these effects, PLA and carbon fiber additives were mixed with recycled PLA pellets in different ratios to attempt to regain material properties lost in the recycling process. To complete these findings, an experiment was design and executed.

The research found that tensile strength during multiple iterations of recycling remained mostly unaffected, however, the strain degraded exponentially. In the PLA additive study, high ratios of PLA additive were able to increase the strength and strain properties of the …


Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma Jan 2022

Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma

Graduate Theses, Dissertations, and Problem Reports

Additive manufacturing (AM) fabricated oxide dispersion strengthened (ODS) alloys are given high expectations for critical structural components such as the first stage turbine blade for their excellent creep strength and oxidation resistance compared to superalloys. However, the powder feedstock processing is still an open question since current state-of-the-art processes are not capable of achieving ultrafine strengthening elements such as Y2O3 in powder which leads to agglomeration issues in as-consolidated alloys. In this research, the oxidation behavior and stability of ultrafine oxide in AM-printed alloys using mechanically alloyed powders were evaluated at 1100 oC. In addition, a …


A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach Jan 2022

A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach

Electronic Theses and Dissertations

This study seeks to determine the technical feasibility of fabricating reduced activation ferritic martensitic (RAFM) steel parts, using a wire arc additive manufacturing (WAAM) process. The WAAM process, manufactures a part by depositing layers of metal onto a substrate to build a large scale near net shape part. RAFM alloy steels are next generation steels designed to resist radiation effects in the radiation intense working environments, such as nuclear reactors. To achieve this, process development and testing to design the WAAM production process with the custom RAFM filler wire was carried out. Several welding waveform modes were tested, and it …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen Aug 2021

Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen

LSU Doctoral Dissertations

Selective Laser Melting (SLM) is a laser powder bed fusion (L-PBF) based additive manufacturing (AM) method, which uses a laser beam to melt the selected areas of the metal powder bed. A customized SLM 3D printer that can handle a small quantity of metal powders was built in the lab to achieve versatile research purposes. The hardware design, electrical diagrams, and software functions are introduced in Chapter 2. Several laser surface engineering and SLM experiments were conducted using this customized machine which showed the functionality of the machine and some prospective fields that this machine can be utilized. Chapter 3 …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Metallurgical And Thermal Processing Investigation Of Additively Manufactured Superalloys Jbk-75 And Nasa-Hr-1, Allyse Birken, Derek Noel Jun 2021

Metallurgical And Thermal Processing Investigation Of Additively Manufactured Superalloys Jbk-75 And Nasa-Hr-1, Allyse Birken, Derek Noel

Materials Engineering

Aerojet Rocketdyne is investigating the use of directed energy deposition (DED), an additive manufacturing process, to reduce cost and lead time for manufacturing complex rocket engine components for their RS-25 engines. JBK-75 and NASA-HR-1, two Fe-Ni-base, age-hardenable (γ′) superalloys, are used for nozzle structural jackets and hot gas manifolds. Currently, these parts are produced using traditional forging or casting methods followed by intensive machining operations. Additionally, these alloys were designed for use in the wrought condition and require a different set of post-processing heat treatments when produced using DED due to their dendritic, segregated microstructure in the as-built condition. Homogenization …


Minimizing Leakage In Thin Walled Structures Printed Through Selective Laser Melting, Andrew Spencer Yap Jun 2021

Minimizing Leakage In Thin Walled Structures Printed Through Selective Laser Melting, Andrew Spencer Yap

Master's Theses

In this project, the scan strategy of selective laser melting (SLM) for thin walled structures was investigated by changing laser parameters and tool path. Producing thin walled structures is difficult due to defects such as warpage and porosity. A layer on the SLM 125 consists of hatch volume, fill contours, and borders, however, for thin walls, hatch volume can become unavailable, resulting in a solely border/fill contour laser tool path.

Three central composite designs (CCD) were created to optimize the laser parameters of borders to minimize leakage rate and porosity. The two factors changed were border laser power and scanning …


Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E. Jan 2021

Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E.

Theses and Dissertations--Mechanical Engineering

Laser Powder Bed Fusion (L-PBF) is one of the most promising Additive Manufacturing (AM) methods to fabricate near net-shape metallic materials for a wide range of applications such as patient-specific medical devices, functionally graded materials, and complex structures. NiTi shape memory alloys (SMAs) are of great interest due to a combination of unique features, such as superelasticity, shape memory effect, high ductility, work output, corrosion resistance, and biocompatibility that could be employed in many applications in automotive, aerospace, and biomedical industries. Due to the difficulties with traditional machining and forming of NiTi components, the ability to fabricate complex parts, tailor …


Study On The Viability Of Preparing Plaster Molds For Rapid Prototyping Of Complex Ceramic Parts Using The Lost Pla Method, Shelton F. Fowler Iv Nov 2020

Study On The Viability Of Preparing Plaster Molds For Rapid Prototyping Of Complex Ceramic Parts Using The Lost Pla Method, Shelton F. Fowler Iv

Honors College Theses

In the field of metal casting, cast parts often require an internal cavity to be made to meet design requirements. Frequently, these interior surfaces are not manufacturable through standard machining processes, and even when possible, they would most likely involve expensive and time-consuming operations. In order to avoid these machining costs, expendable ceramic or sand cores are manufactured and placed into the mold to allow the direct casting of complex internal geometries. This research seeks to use relatively inexpensive plastic 3D printing technology and the lost PLA casting process for the production of low-cost and rapidly producible ceramic cores. A …


Investigation Of Selective Laser Melting Fabricated Internal Cooling Channels, Colin Jack Apr 2020

Investigation Of Selective Laser Melting Fabricated Internal Cooling Channels, Colin Jack

Masters Theses

Channels where coolant is run to cool a system are common in injection mold tooling. Conventionally, these channels are machined into the mold. This has limited the design of mold cooling systems to the constraints of traditional machining processes, where straight circular channels machined from cast material are typical. The transfer of heat away from the part cavity into these cooling channels has a large effect on the cooling time of the injection mold cycle. In this investigation, laser powder bed fusion processes were used to create non-circular cooling channels. To compare cooling performance, elliptical and circular channels of equal …


Performance Evaluation Of Alsi10mg Fabricated By A Selective Laser Melting Process, David Michael Murphy Jan 2020

Performance Evaluation Of Alsi10mg Fabricated By A Selective Laser Melting Process, David Michael Murphy

Masters Theses

“Selective laser melting is becoming a widely used additive manufacturing technique that melts metal powder in a layer by layer process in order to build a desired part or geometry. Like many additive processes, selective laser melting allows for fabrication of parts with complex geometries. In order to fabricate a fully dense part there are a number of variables to take into account including: powder characteristics, laser parameters, and environmental parameters. Each of these variables can affect the microstructure and thus the mechanical performance of an additively manufactured part. In this work, the aluminum alloy AlSi10Mg was investigated. AlSi10Mg is …


Characterization Of Directed Energy Deposition Additively Manufactured Grcop-42 Alloy, Scott Landes Jan 2020

Characterization Of Directed Energy Deposition Additively Manufactured Grcop-42 Alloy, Scott Landes

Electronic Theses and Dissertations

GRCop is an alloy family constructed of copper, chromium, and niobium and was developed by NASA for high heat flux applications. The first of its kind, GRCop-84, was specifically designed for the environments seen by channel cooled main combustion chamber liners. To further increase thermal conductivity while maintaining material strength characteristics, the percentage of alloying elements were cut in half and GRCop- 42 was developed. In recent years, NASA has successfully additively manufactured GRCop with comparable material characteristics to wrought GRCop using a Laser Powder Bed Fusion (L-PBF) process. Benefits of this process include fabrication of intricate cooling channels as …


Development Of Lightweight Materials By Meso- And Microstructure Control, Myranda Shea Spratt Jan 2020

Development Of Lightweight Materials By Meso- And Microstructure Control, Myranda Shea Spratt

Doctoral Dissertations

”In this work, two lightweight structures – lattice structures and metal matrix syntactic foams (MMSF) – were studied. Honeycomb lattices were manufactured by powder bed selective laser melting (SLM) from 304L stainless steel. The wall thicknesses of these structures ranged from 0.2 to 0.5 mm. Surface roughness was the primary cause of dimensional mismatch between the expected and as-built structures with an average wall thickness increase of 0.12 mm. The strength of the honeycombs increased with increasing wall thickness. A feature of the SLM microstructure, the melt pool boundary, was also studied as a part of this work. 3D models …