Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Electron-Beam Patterning Of Teflon Af For Surface Plasmon Resonance Sensing, Mansoor A. Sultan Jan 2015

Electron-Beam Patterning Of Teflon Af For Surface Plasmon Resonance Sensing, Mansoor A. Sultan

Theses and Dissertations--Electrical and Computer Engineering

Variable pressure electron beam etching and lithography for Teflon AF has been demonstrated. The relation between dose and etching depth is tested under high vacuum and water vapor. High resolution structures as small as 75 nm half-pitch have been resolved. Several simulation tools were tested for surface plasmon excitation. Grating based dual mode surface plasmon excitation has been shown numerically and experimentally.


The Constrained Locally Corrected Nyström Method, Nastaran Hendijani Jan 2015

The Constrained Locally Corrected Nyström Method, Nastaran Hendijani

Theses and Dissertations--Electrical and Computer Engineering

In this dissertation a generalization of the locally corrected Nyström (LCN) discretization method is outlined wherein sparse transformations of the LCN system matrix are obtained via singular value decompositions of local constraint matrices. The local constraint matrices are used to impose normal continuity of the currents across boundaries shared by mesh elements. For this reason, the method is called constrained LCN (CLCN).

Due to the CLCN’s simplicity and flexibility, it is straightforward to develop high order CLCN systems for different formulations and mesh element types. As compared to the LCN, the CLCN method offers memory savings and improved accuracy when …


Constrained Divergence-Conforming Basis Functions For Method Of Moments Discretizations In Electromagnetics, Robert Pfeiffer Jan 2015

Constrained Divergence-Conforming Basis Functions For Method Of Moments Discretizations In Electromagnetics, Robert Pfeiffer

Theses and Dissertations--Electrical and Computer Engineering

Higher-order basis functions are widely used to model currents and fields in numerical simulations of electromagnetics problems because of the greater accuracy and computational efficiency they can provide. Different problem formulations, such as method of moments (MoM) and the finite element method (FEM) require different constraints on basis functions for optimal performance, such as normal or tangential continuity between cells. In this thesis, a method of automatically generating bases that satisfy the desired basis constraints is applied to a MoM formulation for scattering problems using surface integral equations. Numerical results demonstrate the accuracy of this approach, and show good system …