Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Atomic, Molecular and Optical Physics

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 126

Full-Text Articles in Engineering

Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey Mar 2021

Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey

Theses and Dissertations

The transverse modulus of single strand carbon fibers is measured using PeakForce Atomic Force Microscopy - Quantitative Nanomechanical Measurement to less than 5 percent error for 11 types of carbon fiber with longitudinal moduli between 924-231 GPA, including export-controlled fibers. Statistical methods are employed to improve the quality of data to exclude outliers within an measurement and within the sample set. A positive linear correlation between the longitudinal and transverse modulus with an R2=0.76 is found. Pitch-based fibers exhibit lower measurement error than PAN-based fibers, while PAN fibers exhibited no apparent modulus correlation when the Pitch fibers are …


Lithium Compound Characterization Via Laser Induced Breakdown Spectroscopy And Raman Spectroscopy, James T. Stofel Mar 2021

Lithium Compound Characterization Via Laser Induced Breakdown Spectroscopy And Raman Spectroscopy, James T. Stofel

Theses and Dissertations

Industries such as lithium-ion battery producers and the nuclear industry community seek to produce and store lithium in pure chemical forms. However, these lithium compounds are reactive with the atmosphere and quickly degrade into less desirable forms. Therefore, industry desires a fast and effective quality control approach to quantify the ingrowth of these secondary lithium chemical forms. This research presents a novel approach using Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy in tandem to enhance lithium compound characterization beyond what is achieved by either technique alone. The resulting spectral data are aggregated using data fusion and analyzed using chemometrics for …


Computational Electromagnetic Modeling Of Metasurface Optical Devices With Defect Study, Carlos D. Diaz Mar 2021

Computational Electromagnetic Modeling Of Metasurface Optical Devices With Defect Study, Carlos D. Diaz

Theses and Dissertations

One of the first fabricated metasurface optical devices, the in-plane V-antenna lenses, were plagued by a fundamental transmission limit (<25 >). Two distinct sets of Out-of-Plane phase elements were designed with improved transmission (~60 ). These were fabricated as beamsteerers and characterized in terms of their Bidirectional Transmittance Distribution Function measured as a function of scatter angle. Experimental data from the beamsteerers was analyzed via simulations using a finite element method (FEM). The measurements showed the designed beamsteering, but also a strong zero-order diffraction not present in the simulations, which motivated this study to understand what was causing these differences. …


Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan Dec 2020

Applications Of Cathodoluminescence In Plasmonic Nanostructures And Ultrathin Inas Quantum Layers, Qigeng Yan

Graduate Theses and Dissertations

Due to the advanced focusing ability, characterization methods based on the electron-beam excitation have been broadly applied to investigate nanomaterials. Structural or compositional information is commonly acquired using electron microscopes. Moreover, taking advantage of the super spatial resolution of the focused electron beam, optical properties of nanomaterials can be also obtained. Herein, general concepts and processes of the interaction between electrons and materials are studied. Two specific optical nanomaterials, including plasmonic nanostructures and semiconductor quantum layers, are investigated by the cathodoluminescence (CL) measurement.

Surface plasmonic resonance can be generated when high-energy electrons strike the interface between the dielectric medium and …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani Jul 2020

Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers has evolved into a powerful technique for high-precision metrology. In this method a physical parameter to be measured imparts a phase shift onto a pulse circulating in the laser cavity. Inside a laser cavity, that phase shift becomes a frequency shift (phase shift/round-trip time) applied to the whole frequency comb created by this pulse as it exits the cavity at each round-trip. This frequency shift is measured by interfering this comb with a reference comb created by a reference pulse circulating in the same mode-locked …


Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr Jul 2020

Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr

Optical Science and Engineering ETDs

Over the past decades, high-power fiber lasers and amplifiers have been extensively under research to achieve higher output powers. However, temperature rise in the core of fiber lasers and amplifiers has been a big issue in power-scaling. Radiation-balancing is a viable technique introduced for effective heat mitigation in lasers and amplifiers by S. Bowman in 1995. Radiation-balancing relies on solid-state laser cooling as a self-cooling mechanism to mitigate the generated heat in lasers and amplifiers. To implement the mentioned idea in fiber lasers and amplifiers, a set of issues should be scrutinized; (i) the amenability of silica glass (as the …


Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert Apr 2020

Applications Of The Negatively-Charged Silicon Vacancy Color Center In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half-maximum spot size of 89 ± 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman Mar 2020

Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman

Theses and Dissertations

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratory's 88-Inch Cyclotron to investigate the 160Gd(p,n)160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gd(p,n)160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless steel, one iron, fifteen gadolinium, …


Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao Mar 2020

Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao

Theses and Dissertations

This work investigated the capability of a portable LIBS device to detect and quantify dopants in plutonium surrogate alloys, specifically gallium, which is a common stabilizer used in plutonium alloys. The SciAps Z500-ER was utilized to collect spectral data from cerium-gallium alloys of varying gallium concentrations. Calibration models were built to process spectra from the Ce-Ga alloys and calculate gallium concentration from spectral emission intensities. Univariate and multivariate analysis techniques were used to determine limits of detection of different emission line ratios. Spatial mapping measurements were conducted to determine the device's ability to detect variations in gallium concentration on the …


The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate Mar 2020

The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate

Theses and Dissertations

Hollow-core photonic crystal fibers (HCPCFs) shows promise as a hybrid laser with higher nonlinear process limits and small beam size over long gain lengths. This work focuses on the design of a CW molecular nitrogen (N2) stimulated Raman laser. N2 offers Raman gains scaling up to 900 amg, scaling higher than H2. The cavity experiment showed the need to include Rayleigh scattering in the high pressure required for N2 Raman lasing. Even at relatively low pressure ssuch as 1,500 psi, high conversion percentages should be found if the fiber length is chosen based on …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent Jan 2019

Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent

Theses, Dissertations and Capstones

Hydrophobic thiol coated gold nanoparticles have recently been investigated for their ability to self-assemble into robust, ultra-thin, porous membranes at a liquid-vapor interface. Due to the well-ordered, hexagonal close-packed nanoparticle arrays formed during the self-assembly process, these 2-dimensional sheets have very well-defined pore structures and have been shown to span gaps of several microns under ideal conditions. While these self-assembled nanoparticle monolayers have very promising applications in the field of size-selective filtration due to their well-defined pore structure, they need to be supported by a rigid substrate with a large amount of open area. Here, tightly packed arrays of silica …


Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran Jan 2019

Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran

Electronic Theses and Dissertations

We theoretically and experimentally investigate the transfer of orbital angular momentum from light to an ensemble of semiconductor-based nanostructures composed of lead sulfide quantum dots. Using an ensemble of quantum dots offers a higher cross-section and more absorption of twisted light fields compared to experimentally challenging single-nanostructure measurements. However, each quantum dot (except for on-center) sees a displaced light beam parallel to its own axis of symmetry. The transition matrix elements for the light-matter interaction are calculated by expressing the displaced light beam in terms of the appropriate light field centered on the nanoparticles. The resulting transition rate induced by …


Thermal Analysis And Design Of Conduction Links For A Superconducting Radio Frequency Resonator, Aaron Mckeown Jan 2019

Thermal Analysis And Design Of Conduction Links For A Superconducting Radio Frequency Resonator, Aaron Mckeown

Graduate Research Theses & Dissertations

The SRF conduction link project at Fermi National Accelerator Laboratory aims to develop an SRF particle accelerator design that is more applicable for industrial use. Collaboration between NIU college of engineering and NIU department of physics provided the bulk of design and analysis for this project. Currently, cooling systems, used in SRF particle accelerators, pump liquid helium across the SRF cavity to provide convection based cooling. The goal of this project is to incorporate a conduction based cooling system. In a conduction based cooling system, heat will flow from the SRF cavity into a cryocooler through a conduction link. In …


Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva Dec 2018

Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis proposes a light-weight, compact, and accurate optical micro-seismometer that could be used in many applications, such as planetary exploration. The sensor proposed here is based on the principle of whispering gallery optical mode (WGM) resonance shifts of a dielectric micro-resonator due to disturbances of its evanescent field. The micro-seismometer could be used in place of the traditional bulky seismometers. The design of a waveguide-resonator and mechanical structure to disturb the evanescent field are presented. A proof-of-concept a seismometer model that uses a 5µm ring resonator is numerically tested with actual seismic data. The results show that a WGM-based …


Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger Dec 2018

Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger

UNLV Theses, Dissertations, Professional Papers, and Capstones

X-ray induced damage is generally considered a nuisance, but in the field of Useful Hard X-ray Photochemistry we harness the highly ionizing and penetrating properties of hard X-rays (> 7 keV) to initiate novel photochemical decomposition and synthesis at ambient and extreme conditions. Preliminary experiments suggest that the energy of irradiating photons and the sample pressure play roles in determining the nature of X-ray induced damage. Here, we present the X-ray energy dependence of damage induced in strontium oxalate, strontium nitrate, and barium nitrate, as well as the pressure dependence of X-ray induced damage of strontium oxalate. Our results indicate …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Bipartite Quantum Interactions: Entangling And Information Processing Abilities, Siddhartha Das Oct 2018

Bipartite Quantum Interactions: Entangling And Information Processing Abilities, Siddhartha Das

LSU Doctoral Dissertations

The aim of this thesis is to advance the theory behind quantum information processing tasks, by deriving fundamental limits on bipartite quantum interactions and dynamics. A bipartite quantum interaction corresponds to an underlying Hamiltonian that governs the physical transformation of a two-body open quantum system. Under such an interaction, the physical transformation of a bipartite quantum system is considered in the presence of a bath, which may be inaccessible to an observer. The goal is to determine entangling abilities of such arbitrary bipartite quantum interactions. Doing so provides fundamental limitations on information processing tasks, including entanglement distillation and secret key …


A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise May 2018

A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise

Mechanical Engineering Research Theses and Dissertations

In this thesis, a laser velocity sensor concept based on optical microresonators is presented and the application to spacecraft atmospheric entry is explored. The concept is based on the measurement of Doppler shift of back-scattered laser light. Specifically, the Doppler shift is detected by observing the whispering gallery optical modes (WGM) of a dielectric microresonator excited by the back scattered light from particulates and gas molecules. The microresonator replaces the typical Fabry-Perot interferometer and CCD camera system, thereby significantly reducing the size and weight of the overall detection system. This thesis presents proof-of-concept results for this measurement approach. The Doppler …


Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender May 2018

Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender

Student Theses 2015-Present

This paper aims to shed light on the dissonance caused by the superimposition of Dominant Human Systems on Natural Systems. I highlight the synthetic nature of Dominant Human Systems as egoic and linguistic phenomenon manufactured by a mere portion of the human population, which renders them inherently oppressive unto peoples and landscapes whose wisdom were barred from the design process. In pursuing a radical pragmatic approach to mending the simultaneous oppression and destruction of the human being and the earth, I highlight the necessity of minimizing entropic chaos caused by excess energy expenditure, an essential feature of systems that aim …


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter Apr 2018

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due to electronic …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin Dec 2017

Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin

Graduate Theses and Dissertations

Chalcogen-based layered superconductors with a litharge structure such as FeS and FeSe mono-layers undergo structural and superconducting phase transitions that are tunable by doping. Representing another material platform with a litharge structure but without valence d-electrons, SnO monolayers also display a structural ground state with a degenerate rectangular unit cell at zero temperature and a charge-tunable energy barrier that leads to a thermally-controllable structural phase change. Doped SnO monolayers with rectangular degenerate unit cells give rise to two-dimensional multiferroicity. Their two-dimensional elastic energy landscape adopts a basic analytic expression that is employed to discuss this structural transition. The results contained …