Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats ...


Observer-Based Event-Triggered And Set-Theoretic Neuro-Adaptive Controls For Constrained Uncertain Systems, Abdul Ghafoor Jan 2020

Observer-Based Event-Triggered And Set-Theoretic Neuro-Adaptive Controls For Constrained Uncertain Systems, Abdul Ghafoor

Doctoral Dissertations

"In this study, several new observer-based event-triggered and set-theoretic control schemes are presented to advance the state of the art in neuro-adaptive controls. In the first part, six new event-triggered neuro-adaptive control (ETNAC) schemes are presented for uncertain linear systems. These comprehensive designs offer flexibility to choose a design depending upon system performance requirements. Stability proofs for each scheme are presented and their performance is analyzed using benchmark examples. In the second part, the scope of the ETNAC is extended to uncertain nonlinear systems. It is applied to a case of precision formation flight of the microsatellites at the Sun-Earth ...


Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay Jan 2020

Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay

Doctoral Dissertations

”Lean has become a common term and goal in organizations throughout the world. The approach of eliminating waste and continuous improvement may seem simple on the surface but can be more complex when it comes to implementation. Some firms implement lean with great success, getting complete organizational buy-in and realizing the efficiencies foundational to lean. Other organizations struggle to implement lean. Never able to get the buy-in or traction needed to really institute the sort of cultural change that is often needed to implement change. It would be beneficial to have a tool that organizations could use to assess their ...


Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook Jan 2020

Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook

Doctoral Dissertations

”The hydration of multi-phase ordinary Portland cement (OPC) and its pure phase derivatives, such as tricalcium silicate (C3S) and belite (ß-C2S), are studied in the context varying process parameters -- for instance, variable water content, water activity, superplasticizer structure and dose, and mineral additive type and particle size. These parameters are studied by means of physical experiments and numerical/computational techniques, such as: thermodynamic estimations; numerical kinetic-based modelling; and artificial intelligence techniques like machine learning (ML) models. In the past decade, numerical kinetic modeling has greatly improved in terms of fitting experimental, isothermal calorimetry to kinetic-based modelling ...


Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh Oct 2019

Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh

Doctoral Dissertations

Society has benefited from the technological revolution and the tremendous growth in computing powered by Moore's law. However, we are fast approaching the ultimate physical limits in terms of both device sizes and the associated energy dissipation. It is important to characterize these limits in a physically grounded and implementation-agnostic manner, in order to capture the fundamental energy dissipation costs associated with performing computing operations with classical information in nano-scale quantum systems. It is also necessary to identify and understand the effect of quantum in-distinguishability, noise, and device variability on these dissipation limits. Identifying these parameters is crucial to ...


Feature Space Modeling For Accurate And Efficient Learning From Non-Stationary Data, Ayesha Akter Oct 2019

Feature Space Modeling For Accurate And Efficient Learning From Non-Stationary Data, Ayesha Akter

Doctoral Dissertations

A non-stationary dataset is one whose statistical properties such as the mean, variance, correlation, probability distribution, etc. change over a specific interval of time. On the contrary, a stationary dataset is one whose statistical properties remain constant over time. Apart from the volatile statistical properties, non-stationary data poses other challenges such as time and memory management due to the limitation of computational resources mostly caused by the recent advancements in data collection technologies which generate a variety of data at an alarming pace and volume. Additionally, when the collected data is complex, managing data complexity, emerging from its dimensionality and ...


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans ...


Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on ...


Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery Jan 2018

Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery

Doctoral Dissertations

"The rapid progress and development in machine-learning algorithms becomes a key factor in determining the future of humanity. These algorithms and techniques were utilized to solve a wide spectrum of problems extended from data mining and knowledge discovery to unsupervised learning and optimization. This dissertation consists of two study areas. The first area investigates the use of reinforcement learning and adaptive critic design algorithms in the field of power grid control. The second area in this dissertation, consisting of three papers, focuses on developing and applying clustering algorithms on biomedical data. The first paper presents a novel modelling approach for ...


Mitigation Of Environmental Hazards Of Sulfide Mineral Flotation With An Insight Into Froth Stability And Flotation Performance, Muhammad Badar Hayat Jan 2018

Mitigation Of Environmental Hazards Of Sulfide Mineral Flotation With An Insight Into Froth Stability And Flotation Performance, Muhammad Badar Hayat

Doctoral Dissertations

"Today's major challenges facing the flotation of sulfide minerals involve constant variability in the ore composition; environmental concerns; water scarcity and inefficient plant performance. The present work addresses these challenges faced by the flotation process of complex sulfide ore of Mississippi Valley type with an insight into the froth stability and the flotation performance. The first project in this study was aimed at finding the optimum conditions for the bulk flotation of galena (PbS) and chalcopyrite (CuFeS₂) through Response Surface Methodology (RSM). In the second project, an attempt was made to replace toxic sodium cyanide (NaCN) with the biodegradable ...


Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu Nov 2017

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu

Doctoral Dissertations

Cyber-physical systems frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time the physical plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this dissertation, we demonstrate a software simulation framework (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault-tolerance can be applied. We also show the theoretical benefits of AdaFT, and ...


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use ...


Cognition-Based Approaches For High-Precision Text Mining, George John Shannon Jan 2017

Cognition-Based Approaches For High-Precision Text Mining, George John Shannon

Doctoral Dissertations

"This research improves the precision of information extraction from free-form text via the use of cognitive-based approaches to natural language processing (NLP). Cognitive-based approaches are an important, and relatively new, area of research in NLP and search, as well as linguistics. Cognitive approaches enable significant improvements in both the breadth and depth of knowledge extracted from text. This research has made contributions in the areas of a cognitive approach to automated concept recognition in.

Cognitive approaches to search, also called concept-based search, have been shown to improve search precision. Given the tremendous amount of electronic text generated in our digital ...


Stochastic Network Design: Models And Scalable Algorithms, Xiaojian Wu Nov 2016

Stochastic Network Design: Models And Scalable Algorithms, Xiaojian Wu

Doctoral Dissertations

Many natural and social phenomena occur in networks. Examples include the spread of information, ideas, and opinions through a social network, the propagation of an infectious disease among people, and the spread of species within an interconnected habitat network. The ability to modify a phenomenon towards some desired outcomes has widely recognized benefits to our society and the economy. The outcome of a phenomenon is largely determined by the topology or properties of its underlying network. A decision maker can take management actions to modify a network and, therefore, change the outcome of the phenomenon. A management action is an ...


Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich Dec 2015

Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich

Doctoral Dissertations

Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many novel training techniques. One issue that has affected neural networks and prevented them from performing well in more realistic online environments is that of catastrophic forgetting. Catastrophic forgetting affects supervised learning systems when input samples are temporally correlated or are non-stationary. However, most real-world problems are non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the input space.

Reinforcement learning represents a worst-case scenario when it comes to precipitating catastrophic forgetting in neural networks ...


Learning Parameterized Skills, Bruno Castro Da Silva Mar 2015

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills.

In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and ...


Quantum Inspired Algorithms For Learning And Control Of Stochastic Systems, Karthikeyan Rajagopal Jan 2015

Quantum Inspired Algorithms For Learning And Control Of Stochastic Systems, Karthikeyan Rajagopal

Doctoral Dissertations

"Motivated by the limitations of the current reinforcement learning and optimal control techniques, this dissertation proposes quantum theory inspired algorithms for learning and control of both single-agent and multi-agent stochastic systems.

A common problem encountered in traditional reinforcement learning techniques is the exploration-exploitation trade-off. To address the above issue an action selection procedure inspired by a quantum search algorithm called Grover's iteration is developed. This procedure does not require an explicit design parameter to specify the relative frequency of explorative/exploitative actions.

The second part of this dissertation extends the powerful adaptive critic design methodology to solve finite horizon ...


3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang Aug 2014

3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang

Doctoral Dissertations

The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives.

As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in ...


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations ...


Nonlinear Granger Causality And Its Application In Decoding Of Human Reaching Intentions, Mengting Liu Jan 2013

Nonlinear Granger Causality And Its Application In Decoding Of Human Reaching Intentions, Mengting Liu

Doctoral Dissertations

Multi-electrode recording is a key technology that allows the brain mechanisms of decision making, cognition, and their breakdown in diseases to be studied from a network perspective. As the hypotheses concerning the role of neural interactions in cognitive paradigms become increasingly more elaborate, the ability to evaluate the direction of neural interactions in neural networks holds the key to distinguishing their functional significance.

Granger Causality (GC) is used to detect the directional influence of signals between multiple locations. To extract the nonlinear directional flow, GC was completed through a nonlinear predictive approach using radial basis functions (RBF). Furthermore, to obtain ...


Wireless Sensor Network Modeling Using Modified Recurrent Neural Network: Application To Fault Detection, Azzam Issam Moustapha Apr 2008

Wireless Sensor Network Modeling Using Modified Recurrent Neural Network: Application To Fault Detection, Azzam Issam Moustapha

Doctoral Dissertations

Wireless Sensor Networks (WSNs) consist of a large number of sensors, which in turn have their own dynamics. They interact with each other and the base station, which controls the network. In multi-hop wireless sensor networks, information hops from one node to another and finally to the network gateway or base station. Dynamic Recurrent Neural Networks (RNNs) consist of a set of dynamic nodes that provide internal feedback to their own inputs. They can be used to simulate and model dynamic systems such as a network of sensors.

In this dissertation, a dynamic model of wireless sensor networks and its ...


Modular Machine Learning Methods For Computer-Aided Diagnosis Of Breast Cancer, Mia Kathleen Markey '94 Jun 2002

Modular Machine Learning Methods For Computer-Aided Diagnosis Of Breast Cancer, Mia Kathleen Markey '94

Doctoral Dissertations

The purpose of this study was to improve breast cancer diagnosis by reducing the number of benign biopsies performed. To this end, we investigated modular and ensemble systems of machine learning methods for computer-aided diagnosis (CAD) of breast cancer. A modular system partitions the input space into smaller domains, each of which is handled by a local model. An ensemble system uses multiple models for the same cases and combines the models' predictions.

Five supervised machine learning techniques (LDA, SVM, BP-ANN, CBR, CART) were trained to predict the biopsy outcome from mammographic findings (BIRADS™) and patient age based on a ...


Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan Jan 2000

Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan

Doctoral Dissertations

Performance improvement in computerized Electrocardiogram (ECG) classification is vital to improve reliability in this life-saving technology. The non-linearly overlapping nature of the ECG classification task prevents the statistical and the syntactic procedures from reaching the maximum performance. A new approach, a neural network-based classification scheme, has been implemented in clinical ECG problems with much success. The focus, however, has been on narrow clinical problem domains and the implementations lacked engineering precision. An optimal utilization of frequency information was missing. This dissertation attempts to improve the accuracy of neural network-based single-lead (lead-II) ECG beat and rhythm classification. A bottom-up approach defined ...


Fuzzy Logic Applied To System Control To Enhance Commercial Appliance Performance, Glenn Moffett Jul 1998

Fuzzy Logic Applied To System Control To Enhance Commercial Appliance Performance, Glenn Moffett

Doctoral Dissertations

The purpose of this research is to determine the usefulness of fuzzy logic and fuzzy control when applied to a commercial appliance. Fuzzy logic is a structured, model-free estimator that approximates a function through linguistic input/output associations. Fuzzy rule-based systems apply these methods to solve many types of "real-world" problems, especially where a system is difficult to model, is controlled by a human operator or expert, or where ambiguity or vagueness is common.

This dissertation presents fuzzy sets, fuzzy systems, and fuzzy control, with an example conveying the use of fuzzy control of a consumer product and an overview ...