Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez Dec 2022

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez

Doctoral Dissertations

A computational fluid dynamics approach to evaluate the feasibility of a slotted, natural-laminar-flow airfoil designed for transonic applications, to perform as a high-lift system was developed. Reynolds-Averaged Navier-Stokes equations with a laminar-turbulent transition model for subsonic flow at representative flight conditions were used for this analysis. Baseline high-lift simulations were performed to understand the stall characteristics of the slotted, natural-laminar-flow airfoil. Maximum aerodynamic efficiency was observed with a constant slot-width. In addition, the effectiveness of the aft-element as a high-lift device was explored. Results indicate that a micro-flap is a viable option as a lift effector. These are most effective …


Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado May 2022

Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado

UNLV Theses, Dissertations, Professional Papers, and Capstones

The development of hypersonic airbreathing engines, such as a supersonic combustion ramjet, or scramjet, are implemented for flight Mach numbers over 5 where combustion must occur in supersonic conditions. The advancement of scramjet propulsion has led to favored usage over rocket propulsion systems for in atmosphere applications due to their lighter weight, higher specific impulse, and greater maneuverability [1]. The combustor section of a scramjet engine houses the fuel injectors. Fuel is injected into the supersonic flow with the main objective of achieving rapid and thorough fuel-air mixing because the residence time in the combustion chamber has a timescale of …


A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis May 2022

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis

Mechanical & Aerospace Engineering Theses & Dissertations

Achieving higher Mach numbers for private and commercial flight is a growing interest in the aerospace community. To qualify vehicles prior to flight, tests must be run in wind tunnels. Asymmetric wind tunnel nozzles are of continuing interest to the aerospace community due to their ability to change throat geometry, allowing for a range of Mach numbers to be achieved that encompasses all of the supersonic regime. The sliding block wind tunnel at Old Dominion University (ODU) is designed for a range of Mach numbers from about 1.8 to 3.5 but is limited to an upper limit of 2.8 by …


A Computational Fluid Dynamics-Based Surrogate Wind Turbine Blade Aerodynamic Model For Hybrid Simulation, Eric Lalonde Feb 2022

A Computational Fluid Dynamics-Based Surrogate Wind Turbine Blade Aerodynamic Model For Hybrid Simulation, Eric Lalonde

Electronic Thesis and Dissertation Repository

Hybrid simulation (HS) is a promising technique for studying wind turbines due to the presence of scaling errors in wind tunnel testing. However, HS of wind-loaded structures is limited by the current practice of using lower-accuracy, "pre-calculated" aerodynamic loads, which uncouple the aerodynamic loading from the structural response. This thesis presents six stand-alone studies that collectively build towards a novel HS framework that employs a computational fluid dynamics (CFD) based surrogate model to generate higher-accuracy aerodynamic loads within the HS loop. An experimentally-validated residential wind turbine model equipped with an external damping system was used to illustrate the proposed framework. …