Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Aerospace Engineering

2022

Institution
Keyword
Publication

Articles 1 - 30 of 254

Full-Text Articles in Engineering

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox Dec 2022

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox

Mechanical Engineering Research Theses and Dissertations

There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5" outside diameter tubes. We …


Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi Dec 2022

Energy Dissipation In A Sand Damper Under Cyclic Loading, Ehab Sabi

Civil and Environmental Engineering Theses and Dissertations

Various seismic and wind engineering designs and retrofit strategies have been in development to meet structures' proper and safe operation during earthquake and wind excitation. One such method is the addition of fluid and particle dampers, such as sand dampers, in an effort to reduce excessive and dangerous displacements of structures. The present study implements the discrete element method (DEM) to assess the performance of a pressurized sand damper (PSD) and characterize the dissipated energy under cyclic loading. The idea of a PSD is to exploit the increase in shearing resistance of sand under external pressure and the associated ability …


Health Management And Adaptive Control Of Distributed Spacecraft Systems, Tatiana Alejandra Gutierrez Martinez Dec 2022

Health Management And Adaptive Control Of Distributed Spacecraft Systems, Tatiana Alejandra Gutierrez Martinez

Doctoral Dissertations and Master's Theses

As the development of challenging missions like on-orbit construction and collaborative inspection that involve multi-spacecraft systems increases, the requirements needed to improve post-failure safety to maintain the mission performance also increases, especially when operating under uncertain conditions. In particular, space missions that involve Distributed Spacecraft Systems (e.g, inspection, repairing, assembling, or deployment of space assets) are susceptible to failures and threats that are detrimental to the overall mission performance. This research applies a distributed Health Management System that uses a bio-inspired mechanism based on the Artificial Immune System coupled with a Support Vector Machine to obtain an optimized health monitoring …


Polyelectrolyte Functionalized Forward Osmosis For Water Reclamation From Synthetic Spacecraft Wastewater, Alina Ripp Dec 2022

Polyelectrolyte Functionalized Forward Osmosis For Water Reclamation From Synthetic Spacecraft Wastewater, Alina Ripp

Electronic Theses and Dissertations, 2020-

This study investigated the application of a polyelectrolyte (PE)-assisted metallic iron nanoparticle-integrated forward osmosis (FO) membrane to treat synthetic spacecraft wastewater comprising urea, ammonium carbonate, and linear alkylbenzene sulfonate (LAS). The draw solution (MgSO4) diluted via the FO operation was further treated using a nanofiltration (NF) membrane aimed at producing potable quality water by the FO-NF hybrid process. A cellulose triacetate FO membrane was functionalized by layer-by-layer deposition of polyallylamine hydrochloride (PAH) and polyacrylic acid (PAA) followed by incorporating zero valent iron nanoparticles (ZVINP) within the "bilayers". It required 14 bilayers to ensure a uniform coating as demonstrated via scanning …


Adaptive Analytic Continuation For The State Transition Tensors Of The Two-Body Problem, Tahsinul Haque Tasif Dec 2022

Adaptive Analytic Continuation For The State Transition Tensors Of The Two-Body Problem, Tahsinul Haque Tasif

Electronic Theses and Dissertations, 2020-

In the past few decades, Kessler syndrome (named after Donald J. Kessler) has become a point of concern in the field of Space Situational Awareness and the future of space missions. It refers to a scenario, where space debris in Earth's orbits collides and creates an exponential increase in space debris numbers leading to more collisions and more debris. In order to handle the resulting challenges like conjunction analysis, tracking, and probability of collisions, the State Transition Matrix (STM) and Tensors (STTs) of the orbit problem play a significant role. In addition, STM and STTs are ubiquitous in spaceflight dynamics, …


Noise And Propulsive Efficiency Interactions For Rotors And Propellers At Constant Thrust, Riccardo Roiati Mr. Dec 2022

Noise And Propulsive Efficiency Interactions For Rotors And Propellers At Constant Thrust, Riccardo Roiati Mr.

Doctoral Dissertations and Master's Theses

In the emerging market of Advanced Air Mobility (AAM), aerospace companies have been designing and prototyping electric and hybrid vehicles to revolutionize travel. These vehicles must have low noise and particulate emissions while also having enough propulsive efficiency to complete the mission. This thesis aims to study the relationship between noise and propulsive efficiency as related to any aircraft equipped with an electric motor and a variable pitch rotor/propeller. The combination of the electric motor with the variable pitch propeller/rotor allows for a decoupled rotational speed and torque generation, meaning that the electric motor can generate the same amount of …


On-Board Artificial Intelligence For Failure Detection And Safe Trajectory Generation, Eduardo Morillo Dec 2022

On-Board Artificial Intelligence For Failure Detection And Safe Trajectory Generation, Eduardo Morillo

Doctoral Dissertations and Master's Theses

The use of autonomous flight vehicles has recently increased due to their versatility and capability of carrying out different type of missions in a wide range of flight conditions. Adequate commanded trajectory generation and modification, as well as high-performance trajectory tracking control laws have been an essential focus of researchers given that integration into the National Air Space (NAS) is becoming a primary need. However, the operational safety of these systems can be easily affected if abnormal flight conditions are present, thereby compromising the nominal bounds of design of the system's flight envelop and trajectory following. This thesis focuses on …


The Effects Of Light Intensity And Cell Structure On The Cultivation Of Arthrospira Platensis, Taylor Barnhart Dec 2022

The Effects Of Light Intensity And Cell Structure On The Cultivation Of Arthrospira Platensis, Taylor Barnhart

Honors Theses

As scientists explore further into space, more cost-effective resources are needed for long-term space travel. An interesting solution is Arthrospira platensis, a filamentous cyanobacteria high in proteins and nutrients, and known for its helical structure. In unfavorable conditions, coiled spirulina cells become straight. Spirulina converts carbon dioxide gas into pure oxygen and the different cell structures stimulate different responses in oxygen production and cultivation. In these experiments, 2.3 L containers of pure coiled spirulina and mixed (coiled and straight) spirulina were placed into 3 incubators with different light intensities: 51µmol/m2/s, 25µmol/m2/s, 12µmol/m2/s. Each experiment length was 72 hours and the …


Additively Manufactured Lenses For Modulating Guided Waves In Laminated Composites, Hajar Righi Dec 2022

Additively Manufactured Lenses For Modulating Guided Waves In Laminated Composites, Hajar Righi

Theses and Dissertations

Composite materials have increasingly been used as an alternative to metals and other isotropic materials for primary structural components in aerospace industries. Unlike traditional isotropic materials, composite materials are known to have complex internal microstructures. Therefore, it is essential to develop methods for the inspection, evaluation, and monitoring of composite materials. Ultrasonic-guided waves and, more precisely, Lamb waves have proven to be an efficient and accurate technique for the non-destructive testing. Since guided waves are dispersive and multimodal, it is important to develop a practical method to manipulate Lamb waves to achieve better structural health monitoring and non-destructive inspection results. …


Quasi 1d Modelling Of A Scramjet Engine Cycle Using Heiser-Pratt Approach, Asmaa Chakir Dec 2022

Quasi 1d Modelling Of A Scramjet Engine Cycle Using Heiser-Pratt Approach, Asmaa Chakir

Theses and Dissertations

Scramjet engines are key for sustained hypersonic flights. Analytic models play a critical role in the preliminary design of a scramjet engine configuration. The objective of this research is to develop and validate a quasi-1D model for the scramjet engine encompassing inlet, isolator and combustor, to evaluate the impact of flight conditions and design parameters on the engine functionality. The model is developed assuming isentropic flow in the inlet with a single turn; modified Fanno-flow equations in the isolator that account for the area change of the core flow; and the combustor is modeled using Heiser-Pratt equations accounting for the …


Development And Deployment Of A Dynamic Soaring Capable Uav Using Reinforcement Learning, Jacob Adamski Dec 2022

Development And Deployment Of A Dynamic Soaring Capable Uav Using Reinforcement Learning, Jacob Adamski

Doctoral Dissertations and Master's Theses

Dynamic soaring (DS) is a bio-inspired flight maneuver in which energy can be gained by flying through regions of vertical wind gradient such as the wind shear layer. With reinforcement learning (RL), a fixed wing unmanned aerial vehicle (UAV) can be trained to perform DS maneuvers optimally for a variety of wind shear conditions. To accomplish this task, a 6-degreesof- freedom (6DoF) flight simulation environment in MATLAB and Simulink has been developed which is based upon an off-the-shelf unmanned aerobatic glider. A combination of high-fidelity Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in ANSYS Fluent and low-fidelity vortex lattice (VLM) …


Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky Dec 2022

Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky

Doctoral Dissertations

The adoption of mathematically formal simulation-based optimization approaches within aerodynamic design depends upon a delicate balance of affordability and accessibility. Techniques are needed to accelerate the simulation-based optimization process, but they must remain approachable enough for the implementation time to not eliminate the cost savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point iterative solvers (e.g. such as those employed to solve primal equations, sensitivity equations, design equations, and their combination). The reduced-order model-based acceleration technique collects snapshots of early iteration (pre-convergent) solutions and residuals and then uses them to project …


Development And Implementation Of A Novel Resonantly Ionized Photoemission Thermometry Technique For One-Dimensional Measurements, Walker B. Mccord Dec 2022

Development And Implementation Of A Novel Resonantly Ionized Photoemission Thermometry Technique For One-Dimensional Measurements, Walker B. Mccord

Doctoral Dissertations

In this work, Resonantly Ionized Photoemission Thermometry (RIPT) is established and validated as a novel, non-intrusive, non-seeded, One-Dimensional (1D) line thermometry technique. The RIPT technique resonantly ionizes a target molecule via REMPI (Resonant Enhanced Multi-Photon Ionization) of selectively chosen rotational peaks within a resonant absorption band. Thus, efficiently ionizing and subsequently exciting local nitrogen molecules either by direct or indirect schemes. The excited nitrogen deexcites through photoemissions of the first negative band of N2+[molecular nitrogen], specifically near 390, 425, and 430nm [nanometers], that is then acquired as a 1D line signal. The signal strength at all transitions …


Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez Dec 2022

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez

Doctoral Dissertations

A computational fluid dynamics approach to evaluate the feasibility of a slotted, natural-laminar-flow airfoil designed for transonic applications, to perform as a high-lift system was developed. Reynolds-Averaged Navier-Stokes equations with a laminar-turbulent transition model for subsonic flow at representative flight conditions were used for this analysis. Baseline high-lift simulations were performed to understand the stall characteristics of the slotted, natural-laminar-flow airfoil. Maximum aerodynamic efficiency was observed with a constant slot-width. In addition, the effectiveness of the aft-element as a high-lift device was explored. Results indicate that a micro-flap is a viable option as a lift effector. These are most effective …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere Dec 2022

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Cryogenic Flow Boiling Heat Transfer On Additively Manufactured Liquid Rocket Engine Cooling Channels, Debra Jazmin Ortega Dec 2022

Cryogenic Flow Boiling Heat Transfer On Additively Manufactured Liquid Rocket Engine Cooling Channels, Debra Jazmin Ortega

Open Access Theses & Dissertations

The enhancement of flow boiling heat transfer is critical because it can solve thermal management issues seen across all engineering and manufacturing applications. Even though advancements are being made, more studies are needed to understand the behavior of forced convective boiling further.Currently, there are four major issues in the field of regenerative cooling of liquid rocket engines. 1. The cooling channels are typically manufactured using conventional machining, while aerospace industries are currently exploring the additive manufacturing approach. 2. The experimental critical heat flux values for cryogenic fluids are either lower or very close to the model predictions; however, the effect …


Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza Dec 2022

Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza

Open Access Theses & Dissertations

Over the past decades, small form-factor satellites such as CubeSats have remained as one of the most accessible platforms to reach space for universities, research institutions, private and governmental entities to perform a wide range of missions. This paper presents a survey into the design and implementation of an electrospray rail thruster, to be integrated to the CubeSat platform. The design investigated features propellant tanks for each individual thruster embedded inside the rail of a standard 1U CubeSat. The capabilities of utilizing the electrospray thruster as an attitude & determination control system was also investigated in which, a pointing accuracy …


A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith Dec 2022

A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith

Open Access Theses & Dissertations

The Ti-6Al-4V alloy is widely used in aerospace applications for its beneficial combination of properties. However, this alloy has high solubility for oxygen and thus a high reactivity. Recovered data contained within the Columbia artifacts suggests that this alloy underwent an accelerated degradation and combustion reaction when exposed to the high enthalpy, low-pressure surroundings experienced during reentry into Earth's atmosphere. Arc-jet testing has provided a simulated aerothermodynamic heating environment to mimic what the spacecraft endured. When the effect of thermal alteration on this alpha-beta phase alloy was investigated during previous studies, optical metallography and microhardness tests revealed inconsistencies between samples …


Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth Dec 2022

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth

McKelvey School of Engineering Theses & Dissertations

With the advent of arteriovenous fistula (AVF) for use in hemodialysis, the anastomosis built for such use has become a central point of the study to understand the flow and wall shear stresses in such a system since very large wall shear stresses can lead to arterial/vein rupture. Considering the commonly used creation site of an anastomosis as connecting the radial artery to the cephalic vein, a model is created to calculate the wall shear stresses across various components of the system. The model depicts a connection of the specified vein and artery bridged together allowing the increase in blood …


The Design And Development Of A Miniature Gridded Ecr Ion Thruster, Nicholas Nuzzo Dec 2022

The Design And Development Of A Miniature Gridded Ecr Ion Thruster, Nicholas Nuzzo

Masters Theses

Plasma propulsion, a specific subset of electric propulsion (EP), is a class of space propulsion that produces plasma by excitation of a propellant at or above its ionization energy. This ionized propellant is then accelerated by an externally applied field (magnetic and/or electric) and produces thrust. There is an increasing need for miniaturization in spacecraft technology and the use of plasma EP devices in space propulsion. These systems provide an advantage over traditional chemical propulsion solutions which are less efficient and have more mass. Miniaturization of EP devices allows missions to have more space and mass available for their payloads …


A Theoretical Trade-Off Between Wave Drag And Sonic Boom Loudness Due To Equivalent Area Changes On A Supersonic Body, Nolan L. Dixon Dec 2022

A Theoretical Trade-Off Between Wave Drag And Sonic Boom Loudness Due To Equivalent Area Changes On A Supersonic Body, Nolan L. Dixon

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The NASA University Leadership Initiative (ULI) titled ”Adaptive Aerostructures for Revolutionary Civil Supersonic Transportation” consists of a team of university and industry partners studying the feasibility of reducing the perceived loudness of the sonic boom by introducing an adaptive geometry at localized regions of an aircraft’s outer-mold line. The Utah State University AeroLab is a member of this ULI team and has produced low-fidelity tools to predict the aerodynamic and boom loudness effects from localized changes to the geometry.

Such changes to the geometry affect both the sonic boom loudness and wave drag; however, the precise relationship between boom loudness …


Lifting-Line Predictions For Life And Twist Distributions To Minimize Induced Drag In Ground Effect, Kyler Church Dec 2022

Lifting-Line Predictions For Life And Twist Distributions To Minimize Induced Drag In Ground Effect, Kyler Church

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The elliptic lift distribution produces the minimum induced drag for a given wingspan and desired lift outside of ground effect. This distribution can be generated on any wing by using geometric and/or aerodynamic twist. However, in ground effect, the elliptic lift distribution is not necessarily that which minimizes induced drag. The present work uses a modern numerical lifting-line algorithm to evaluate how the optimum lift distribution varies as a function of height above ground. The algorithm is also used to obtain the twist distributions that should be applied to wings of varying aspect ratios and taper ratios to produce the …


Project Management And Systems Engineering Framework For Educational Cubesat Missions, Bailey Garrett Dec 2022

Project Management And Systems Engineering Framework For Educational Cubesat Missions, Bailey Garrett

Master's Theses

The rising complexity of CubeSat missions and the unique challenges faced by educational CubeSat programs lead to high rates of mission failure. Implementing project management and systems engineering practices can alleviate these challenges and improve mission success rates for educational CubeSat developers. However, existing project management and systems engineering resources are too cumbersome and often assume the student has a base-level understanding of project management and systems engineering fundamentals. A new universal project management and systems engineering framework was created and tailored specifically to the needs of an educational CubeSat mission. The framework was designed to accommodate first-time CubeSat developers, …


Effects Of Atomic Oxygen On Outgassing Of Silicone Materials, Samuel Westrick Dec 2022

Effects Of Atomic Oxygen On Outgassing Of Silicone Materials, Samuel Westrick

Master's Theses

An important consideration for spacecraft material selection is the space environment that the spacecraft will be operating in. Two features of the space environment that drive material selection are material outgassing and the presence of atomic oxygen in low Earth orbit (LEO). Materials that are considered for use in space are tested to be able to understand how they’ll outgas on orbit and how they’ll respond to interactions with atomic oxygen. However, testing to understand how atomic oxygen interaction with a material will affect how the material will outgas is rare and not standardized. This thesis used a vacuum chamber …


Accelerated Aging Of Adhesively Bonded Composite Joints For Use In Material Screening And Selection During Development: A Review And Case Study, Marie Danielle Flanigan Dec 2022

Accelerated Aging Of Adhesively Bonded Composite Joints For Use In Material Screening And Selection During Development: A Review And Case Study, Marie Danielle Flanigan

Theses and Dissertations

Adhesively bonded structures are used in many high-tech industries such as aerospace, automotive, and defense. The application of these joints using composite adherends has increased in recent years because of improved strength-to-weight ratio, design flexibility, and lower concern for corrosion. Quality acceptance of these structures largely depends on reliability and durability which includes influence of environmental service conditions on long-term behavior. Characterization of long-term behavior presents a difficult challenge to those involved in material selection and design due to the long service life of the joint compared to the development time available and complexity of the degradation mechanisms. Therefore, different …


Developmental Evaluation Of The B-1b Aircraft, Jonathon Malycke Dec 2022

Developmental Evaluation Of The B-1b Aircraft, Jonathon Malycke

Theses and Dissertations

The purpose of this test was to perform a Developmental Phase IIA evaluation of the B-1B Lancer for the land-based, long-range, all-weather ground attack mission. One two-hour ground evaluation, one simulator and one flight totaling 7.5 hours was conducted under daylight, visual meteorological conditions from Dyess Air Force Base (AFB) in Abilene, Texas (337th Test and Evaluation Squadron). All test objectives were completed except the low altitude flight evaluation, landing pattern operations, and AFCS operations due to weather, maintenance and time constraints. The test aircraft was representative of a production B-1B aircraft and included a Sniper Targeting Pod and a …


Advanced Generalized Predictive Control And Its Application To Tiltrotor Aircraft For Stability Augmentation And Vibration Reduction, Thomas Glen Ivanco Dec 2022

Advanced Generalized Predictive Control And Its Application To Tiltrotor Aircraft For Stability Augmentation And Vibration Reduction, Thomas Glen Ivanco

Mechanical & Aerospace Engineering Theses & Dissertations

The goals of this research were to restore generalized predictive control (GPC) capability at NASA and within the community, to better understand GPC and its performance relative to other options, and to improve upon the capability of GPC. Unique to this research is the comparison of GPC with other control options including PID controllers, optimal control theory, and other versions of the similar AutoRegressive moving average model with eXogenous inputs (ARX) models. Similar to GPC, ARX models use an experimentally acquired system identification to characterize the input/output relationship between controls and response measurements. Because this relationship is determined from acquired …


Stress-Based Topology Optimization Of Pi Preform-Bonded Composite Laminate Structure, Iwan Broodryk Dec 2022

Stress-Based Topology Optimization Of Pi Preform-Bonded Composite Laminate Structure, Iwan Broodryk

Theses and Dissertations

The purpose of this work is to explore the stress-based topology optimization of structure that utilizes laminated composites and 3D woven Pi preform joints. Simple geometry, loading, and boundary conditions are considered. At a finite element level, an aggregate stress ratio is developed for Pi joint and acreage laminate elements. A basic descent method of moving asymptotes (BDMMA) algorithm is created to solve all optimization problems. Topology results for two different stress-based formulations and a compliance minimization problem are compared, followed by an in-depth analysis at a Pi joint and laminate level.


Analysis Of Proposed Active Radiation Shielding Design Concept For Spacecraft, Claire Mechmann Dec 2022

Analysis Of Proposed Active Radiation Shielding Design Concept For Spacecraft, Claire Mechmann

Theses and Dissertations

A need exists to protect the crew of interplanetary spacecraft from lethal doses of Galactic Cosmic Radiation (GCR) and Solar Energetic Particles (SEPs). As plans progress to send humans beyond lower Earth orbit (LEO) and outside of Earth’s protective magnetosphere, agencies involved in this endeavor find themselves confronted with the obstacle of shielding the crew from this harmful radiation. A proposed active shielding concept design has been suggested, utilizing charged dielectric capacitors to deflect incoming charged particles. This analysis will examine the feasibility of the proposed design and offer potential materials useful for application. The results should prove informative for …