Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


Simulated Biological Fluid Exposure Changes Nanoceria’S Surface Properties But Not Its Biological Response, Robert A. Yokel, Matthew L. Hancock, Benjamin Cherian, Alexandra J. Brooks, Marsha L. Ensor, Hemendra J. Vekaria, Patrick G. Sullivan, Eric A. Grulke Nov 2019

Simulated Biological Fluid Exposure Changes Nanoceria’S Surface Properties But Not Its Biological Response, Robert A. Yokel, Matthew L. Hancock, Benjamin Cherian, Alexandra J. Brooks, Marsha L. Ensor, Hemendra J. Vekaria, Patrick G. Sullivan, Eric A. Grulke

Pharmaceutical Sciences Faculty Publications

Nanoscale cerium dioxide (nanoceria) has industrial applications, capitalizing on its catalytic, abrasive, and energy storage properties. It auto-catalytically cycles between Ce3+ and Ce4+, giving it pro-and anti-oxidative properties. The latter mediates beneficial effects in models of diseases that have oxidative stress/inflammation components. Engineered nanoparticles become coated after body fluid exposure, creating a corona, which can greatly influence their fate and effects. Very little has been reported about nanoceria surface changes and biological effects after pulmonary or gastrointestinal fluid exposure. The study objective was to address the hypothesis that simulated biological fluid (SBF) exposure changes nanoceria’s surface properties …


Nanostructured Materials For Food Applications: Spectroscopy, Microscopy And Physical Properties, Shubham Sharma, Swana Jaiswal, Brendan Duffy, Amit Jaiswal Jan 2019

Nanostructured Materials For Food Applications: Spectroscopy, Microscopy And Physical Properties, Shubham Sharma, Swana Jaiswal, Brendan Duffy, Amit Jaiswal

Articles

Nanotechnology deals with the matter of atomic or molecular scale. Other factors that define the character of a nanoparticle are its physical and chemical properties, such as surface area, surface charge, hydrophobicity of the surface, the thermal stability of the nanoparticle, and its antimicrobial activity. A nanoparticle is usually characterized by using microscopic and spectroscopic techniques. Microscopic techniques are used to characterize the size, shape, and location of the nanoparticle by producing an image of the individual nanoparticle. Several techniques, such as scanning electron microscopy (SEM), transmission electron microscopy/high resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM) and scanning …


Portable, Parallel 9-Wavelength Near-Infrared Spectral Tomography (Nirst) System For Efficient Characterization Of Breast Cancer Within The Clinical Oncology Infusion Suite, Yan Zhao, Brian W. Pogue, Steffen J. Haider, Jiang Gui, Roberta Diflorio-Alexander, Keith Paulsen, Shudong Jiang Jun 2016

Portable, Parallel 9-Wavelength Near-Infrared Spectral Tomography (Nirst) System For Efficient Characterization Of Breast Cancer Within The Clinical Oncology Infusion Suite, Yan Zhao, Brian W. Pogue, Steffen J. Haider, Jiang Gui, Roberta Diflorio-Alexander, Keith Paulsen, Shudong Jiang

Dartmouth Scholarship

A portable near-infrared spectral tomography (NIRST) system was developed with simultaneous frequency domain (FD) and continuous-wave (CW) optical measurements for efficient characterization of breast cancer in a clinical oncology setting. Simultaneous FD and CW recordings were implemented to speed up acquisition to 3 minutes for all 9 wavelengths, spanning a range from 661nm to 1064nm. An adjustable interface was designed to fit various breast sizes and shapes. Spatial images of oxy- and deoxy-hemoglobin, water, lipid, and scattering components were reconstructed using a 2D FEM approach. The system was tested on a group of 10 normal subjects, who were examined bilaterally …


Improved Sensitivity To Fluorescence For Cancer Detection In Wide-Field Image-Guided Neurosurgery, Michael Jermyn, Yoann Gosselin, Pablo A. Valdes, Mira Sibai, Kolbein Kolste Nov 2015

Improved Sensitivity To Fluorescence For Cancer Detection In Wide-Field Image-Guided Neurosurgery, Michael Jermyn, Yoann Gosselin, Pablo A. Valdes, Mira Sibai, Kolbein Kolste

Dartmouth Scholarship

In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX …


Quantitative Spatial Frequency Fluorescence Imaging In The Sub-Diffusive Domain For Image-Guided Glioma Resection, Mira Sibai, Israel Veilleux, Jonathan T. Elliott, Frederic Leblond, Brian Wilson Jan 2015

Quantitative Spatial Frequency Fluorescence Imaging In The Sub-Diffusive Domain For Image-Guided Glioma Resection, Mira Sibai, Israel Veilleux, Jonathan T. Elliott, Frederic Leblond, Brian Wilson

Dartmouth Scholarship

Intraoperative 5- aminolevulinic acid induced-Protoporphyrin IX (PpIX) fluorescence guidance enables maximum safe resection of glioblastomas by providing surgeons with real-time tumor optical contrast. However, visual assessment of PpIX fluorescence is subjective and limited by the distorting effects of light attenuation and tissue autofluorescence. We have previously shown that non-invasive point measurements of absolute PpIX concentration identifies residual tumor that is otherwise non-detectable. Here, we extend this approach to wide-field quantitative fluorescence imaging by implementing spatial frequency domain imaging to recover tissue optical properties across the field-of-view in phantoms and ex vivo tissue.


Comparison Of Magnetic Resonance Imaging-Compatible Optical Detectors For In-Magnet Tissue Spectroscopy: Photodiodes Versus Silicon Photomultipliers, Fadi El-Ghussein, Shudong Jiang, Brian W. Pogue, Keith D. Paulsen, Brian W. Pogue Jul 2014

Comparison Of Magnetic Resonance Imaging-Compatible Optical Detectors For In-Magnet Tissue Spectroscopy: Photodiodes Versus Silicon Photomultipliers, Fadi El-Ghussein, Shudong Jiang, Brian W. Pogue, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs …


Extraction Of Intrinsic Fluorescence From Single Fiber Fluorescence Measurements On A Turbid Medium: Experimental Validation, U. A. Gamm, C. L. Hoy, F. Van Leeuwen - Van Zaane, H. J. C. M. Sterenborg, S. C. Kanick, D J. Robinson, A. Amelink May 2014

Extraction Of Intrinsic Fluorescence From Single Fiber Fluorescence Measurements On A Turbid Medium: Experimental Validation, U. A. Gamm, C. L. Hoy, F. Van Leeuwen - Van Zaane, H. J. C. M. Sterenborg, S. C. Kanick, D J. Robinson, A. Amelink

Dartmouth Scholarship

Abstract

The detailed mechanisms associated with the influence of scattering and absorption properties on the fluorescence intensity sampled by a single optical fiber have recently been elucidated based on Monte Carlo simulated data. Here we develop an experimental single fiber fluorescence (SFF) spectroscopy setup and validate the Monte Carlo data and semi-empirical model equation that describes the SFF signal as a function of scattering. We present a calibration procedure that corrects the SFF signal for all system-related, wavelength dependent transmission efficiencies to yield an absolute value of intrinsic fluorescence. The validity of the Monte Carlo data and semi-empirical model is …


Anthropomorphic Breast Phantoms With Physiological Water, Lipid, And Hemoglobin Content For Near-Infrared Spectral Tomography, Kelly E. Michaelsen, Venkataramanan Krishnaswamy, Adele Shenoy, Emily Jordan, Brian W. Pogue, Keith D. Paulsen Feb 2014

Anthropomorphic Breast Phantoms With Physiological Water, Lipid, And Hemoglobin Content For Near-Infrared Spectral Tomography, Kelly E. Michaelsen, Venkataramanan Krishnaswamy, Adele Shenoy, Emily Jordan, Brian W. Pogue, Keith D. Paulsen

Dartmouth Scholarship

Breast mimicking tissue optical phantoms with sufficient structural integrity to be deployed as stand-alone imaging targets are developed and successfully constructed with biologically relevant concentrations of water, lipid, and blood. The results show excellent material homogeneity and reproducibility with inter- and intraphantom variability of 3.5 and 3.8%, respectively, for water and lipid concentrations ranging from 15 to 85%. The phantoms were long-lasting and exhibited water and lipid fractions that were consistent to within 5% of their original content when measured 2 weeks after creation. A breast-shaped three-compartment model of adipose, fibroglandular, and malignant tissues was created with water content ranging …


Pilot Study Assessment Of Dynamic Vascular Changes In Breast Cancer With Near-Infrared Tomography From Prospectively Targeted Manipulations Of Inspired End-Tidal Partial Pressure Of Oxygen And Carbon Dioxide, Shudong Jiang, Brian W. Pogue, Kelly E. Michaelsen, Michael Jermyn, Michael A. Mastanduno, Tracy E. Frazee, Peter A. Kaufman, Keith D. Paulsen Jul 2013

Pilot Study Assessment Of Dynamic Vascular Changes In Breast Cancer With Near-Infrared Tomography From Prospectively Targeted Manipulations Of Inspired End-Tidal Partial Pressure Of Oxygen And Carbon Dioxide, Shudong Jiang, Brian W. Pogue, Kelly E. Michaelsen, Michael Jermyn, Michael A. Mastanduno, Tracy E. Frazee, Peter A. Kaufman, Keith D. Paulsen

Dartmouth Scholarship

The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant …


Continuous Correction Of Differential Path Length Factor In Near-Infrared Spectroscopy, Tanveer Talukdar, Jason H. Moore, Solomon G. Diamond May 2013

Continuous Correction Of Differential Path Length Factor In Near-Infrared Spectroscopy, Tanveer Talukdar, Jason H. Moore, Solomon G. Diamond

Dartmouth Scholarship

In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively …


White Light-Informed Optical Properties Improve Ultrasound-Guided Fluorescence Tomography Of Photoactive Protoporphyrin Ix, Brendan P. Flynn, Alisha V. Dsouza, Stephen C. Kanick, Scott C. Davis, Brian W. Pogue Apr 2013

White Light-Informed Optical Properties Improve Ultrasound-Guided Fluorescence Tomography Of Photoactive Protoporphyrin Ix, Brendan P. Flynn, Alisha V. Dsouza, Stephen C. Kanick, Scott C. Davis, Brian W. Pogue

Dartmouth Scholarship

Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX …


Compliant Head Probe For Positioning Electroencephalography Electrodes And Near-Infrared Spectroscopy Optodes, Paolo Giacometti, Solomon G. Diamond Feb 2013

Compliant Head Probe For Positioning Electroencephalography Electrodes And Near-Infrared Spectroscopy Optodes, Paolo Giacometti, Solomon G. Diamond

Dartmouth Scholarship

A noninvasive head probe that combines near-infrared spectroscopy (NIRS) and electroencephalography (EEG) for simultaneous measurement of neural dynamics and hemodynamics in the brain is presented. It is composed of a compliant expandable mechanism that accommodates a wide range of head size variation and an elastomeric web that maintains uniform sensor contact pressure on the scalp as the mechanism expands and contracts. The design is intended to help maximize optical and electrical coupling and to maintain stability during head movement. Positioning electrodes at the inion, nasion, central, and preauricular fiducial locations mechanically shapes the probe to place 64 NIRS optodes and …


Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Oct 2012

Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∼4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and …


Image Guided Near-Infrared Spectroscopy Of Breast Tissue In Vivo Using Boundary Element Method, Subhadra Srinivasan, Colin M. Carpenter, Hamid R. Ghadyani, Senate J. Taka, Peter A. Kaufman, Roberta M. Diflorio-Alexander, Wendy A. Wells, Brian W. Pogue, Keith D. Paulsen Nov 2010

Image Guided Near-Infrared Spectroscopy Of Breast Tissue In Vivo Using Boundary Element Method, Subhadra Srinivasan, Colin M. Carpenter, Hamid R. Ghadyani, Senate J. Taka, Peter A. Kaufman, Roberta M. Diflorio-Alexander, Wendy A. Wells, Brian W. Pogue, Keith D. Paulsen

Dartmouth Scholarship

We demonstrate quantitative functional imaging using image-guided near-infrared spectroscopy (IG-NIRS) implemented with the boundary element method (BEM) for reconstructing 3-D optical property estimates in breast tissue in vivo. A multimodality MRI-NIR system was used to collect measurements of light reflectance from breast tissue. The BEM was used to model light propagation in 3-D based only on surface discretization in order to reconstruct quantitative values of total hemoglobin (HbT), oxygen saturation, water, and scatter. The technique was validated in experimental measurements from heterogeneous breast-shaped phantoms with known values and applied to a total of seven subjects comprising six healthy individuals …


Methodology Development For Three-Dimensional Mr-Guided Near Infrared Spectroscopy Of Breast Tumors, Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen Oct 2008

Methodology Development For Three-Dimensional Mr-Guided Near Infrared Spectroscopy Of Breast Tumors, Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen

Dartmouth Scholarship

Combined Magnetic Resonance (MR) and Near Infrared Spectroscopy (NIRS) has been proposed as a unique method to quantify hemodynamics, water content, and cellular size and packing density of breast tumors, as these tissue constituents can be quantified with increased resolution and overlaid on the structural features identified by the MR. However, the choices in how to reconstruct and visualize this information can have a dramatic impact on the feasibility of implementing this modality in the clinic. This is especially true in 3 dimensions, as there is often limited optical sampling of the breast tissue, and methods need to accurately reflect …


Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen Jun 2006

Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images.