Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Medicine and Health Sciences

PDF

Old Dominion University

Keyword
Publication Year
Publication

Articles 1 - 30 of 218

Full-Text Articles in Engineering

Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori Jan 2024

Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori

Bioelectrics Publications

Staphylococcus aureus is the leading cause of skin and soft-tissue infections (SSTIs). SSTIs caused by bacteria resistant to antimicrobials, such as methicillin-resistant S. aureus (MRSA), are increasing in incidence and have led to higher rates of hospitalization. In this study, we measured MRSA inactivation by nanosecond pulsed electric fields (nsPEF), a promising new cell ablation technology. Our results show that treatment with 120 pulses of 600 ns duration (28 kV/cm, 1 Hz), caused modest inactivation, indicating cellular damage. We anticipated that the perturbation created by nsPEF could increase antibiotic efficacy if nsPEF were applied as a co-treatment. To test this …


Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo Jan 2024

Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo

Electrical & Computer Engineering Faculty Publications

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the …


Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim Jan 2024

Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim

Bioelectronics Publications

Conventional magnetophoresis techniques for manipulating biocarriers and cells predominantly rely on large-scale electromagnetic systems, which is a major obstacle to the development of portable and miniaturized cell-on-chip platforms. Herein, a novel magnetic engineering approach by tailoring a nanoscale notch on a disk micromagnet using two-step optical and thermal lithography is developed. Versatile manipulations are demonstrated, such as separation and trapping, of carriers and cells by mediating changes in the magnetic domain structure and discontinuous movement of magnetic energy wells around the circumferential edge of the micromagnet caused by a locally fabricated nano-notch in a low magnetic field system. The motion …


Recent Progress In Microrna Detection Using Integrated Electric Fields And Optical Detection Methods, Logeeshan Velmanickam, Dharmakeerthi Nawarathna Jan 2024

Recent Progress In Microrna Detection Using Integrated Electric Fields And Optical Detection Methods, Logeeshan Velmanickam, Dharmakeerthi Nawarathna

Electrical & Computer Engineering Faculty Publications

Low-cost, highly-sensitivity, and minimally invasive tests for the detection and monitoring of life-threatening diseases and disorders can reduce the worldwide disease burden. Despite a number of interdisciplinary research efforts, there are still challenges remaining to be addressed, so clinically significant amounts of relevant biomarkers in body fluids can be detected with low assay cost, high sensitivity, and speed at point-of-care settings. Although the conventional proteomic technologies have shown promise, their ability to detect all levels of disease progression from early to advanced stages is limited to a limited number of diseases. One potential avenue for early diagnosis is microRNA (miRNA). …


Plasma Protein Signatures Of Adult Asthma, Gordon J. Smilnak, Yura Lee, Abhijnan Chattopadhyay, Annah B. Wyss, Julie D. White, Sinjini Sikdar, Jianping Jin, Andrew J. Grant, Alison A. Motsinger-Reif, Jian-Liang Li, Mikyeong Lee, Bing Yu, Stephanie J. London Jan 2024

Plasma Protein Signatures Of Adult Asthma, Gordon J. Smilnak, Yura Lee, Abhijnan Chattopadhyay, Annah B. Wyss, Julie D. White, Sinjini Sikdar, Jianping Jin, Andrew J. Grant, Alison A. Motsinger-Reif, Jian-Liang Li, Mikyeong Lee, Bing Yu, Stephanie J. London

Mathematics & Statistics Faculty Publications

Background: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma.

Methods: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with …


Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2024

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed atmospheric pressure plasma jets (ns-APPJs) produce reactive plasma species, including charged particles and reactive oxygen and nitrogen species (RONS), which can induce oxidative stress in biological cells. Nanosecond pulsed electric field (nsPEF) has also been found to cause permeabilization of cell membranes and induce apoptosis or cell death. Combining the treatment of ns-APPJ and nsPEF may enhance the effectiveness of cancer cell inactivation with only moderate doses of both treatments. Employing ns-APPJ powered by 9 kV, 200 ns pulses at 2 kHz and 60-nsPEF of 50 kV/cm at 1 Hz, the synergistic effects on pancreatic cancer cells (Pan02) …


Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper Jan 2024

Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper

Chemistry & Biochemistry Faculty Publications

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, …


Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li Jan 2024

Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li

Computer Science Faculty Publications

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding …


A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea Jul 2023

A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea

Rehabilitation Sciences Faculty Publications

Brain–body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of ‘brain’ activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a …


Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov Jun 2023

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov

Bioelectrics Publications

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …


Marineepi: A Gui-Based Matlab Toolbox To Simulate Marine Pathogen Transmission, Gorka Bidegain, Tal Ben-Horin, Eric N. Powell, John M. Klinck, Eileen E. Hofmann Jan 2023

Marineepi: A Gui-Based Matlab Toolbox To Simulate Marine Pathogen Transmission, Gorka Bidegain, Tal Ben-Horin, Eric N. Powell, John M. Klinck, Eileen E. Hofmann

CCPO Publications

The Graphical User Interface (GUI) MarineEpi is presented as a Matlab toolbox for easily (i) constructing disease transmission models for different marine host-pathogen systems, (ii) running simulations by specifying initial conditions and model parameters, and (iii) interpreting the resulting time series of the host and pathogen population dynamics. MarineEpi users can generate models for systems in which pathogen transmission occurs through contact with infected individuals (SI), contact with dead infected individuals (SID), contact with environmental pathogens released by infected individuals (SIP), and contact with environmental pathogens released by dead infected individuals (SIPD). MarineEpi is a freely available GUI that provides …


The Effects Of Dental Hygiene Instrument Handles On Muscle Activity Production, Jessica R. Suedbeck, Daniel Russell, Cortney Armitano Lago, Emily A. Ludwig Jan 2023

The Effects Of Dental Hygiene Instrument Handles On Muscle Activity Production, Jessica R. Suedbeck, Daniel Russell, Cortney Armitano Lago, Emily A. Ludwig

Dental Hygiene Faculty Publications

Purpose The objective of this study was to compare the effects of ten commercially available instrument handle designs’ mass and diameter on forearm muscle activity during a simulated periodontal scaling experience.

Methods A convenience sample of 25 registered dental hygienists were recruited for this IRB-approved study. Ten commercially available instruments were categorized into four groups based on their masses and diameters: large diameter/light mass, small diameter/light mass, large diameter/heavy mass, and small diameter/heavy mass. Participants were randomized to four instruments with one from each group. Participants scaled with each instrument in a simulated oral environment while muscle activity was collected …


Heart Disease Prediction Using Stacking Model With Balancing Techniques And Dimensionality Reduction, Ayesha Noor, Nadeem Javaid, Nabil Alrajeh, Babar Mansoor, Ali Khaqan, Safdar Hussain Bouk Jan 2023

Heart Disease Prediction Using Stacking Model With Balancing Techniques And Dimensionality Reduction, Ayesha Noor, Nadeem Javaid, Nabil Alrajeh, Babar Mansoor, Ali Khaqan, Safdar Hussain Bouk

School of Cybersecurity Faculty Publications

Heart disease is a serious worldwide health issue with wide-reaching effects. Since heart disease is one of the leading causes of mortality worldwide, early detection is crucial. Emerging technologies like Machine Learning (ML) are currently being actively used by the biomedical, healthcare, and health prediction industries. PaRSEL, a new stacking model is proposed in this research, that combines four classifiers, Passive Aggressive Classifier (PAC), Ridge Classifier (RC), Stochastic Gradient Descent Classifier (SGDC), and eXtreme Gradient Boosting (XGBoost), at the base layer, and LogitBoost is deployed for the final predictions at the meta layer. The imbalanced and irrelevant features in the …


Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study, Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Andrei G. Pakhomov Jan 2023

Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study, Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Andrei G. Pakhomov

Bioelectrics Publications

Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns–10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15–20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30–40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them …


Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood Jan 2023

Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood

Bioelectrics Publications

Nanodiamonds (ND) have attracted significant interest for their use in several biomedical applications. These applications can be very useful if the safety and compatibility of ND are proven. We assessed the effects of ND (100 nm, Carboxylated) on primary macrophages and a macrophage-like cell line and found that these particles are not toxic to these cells at lower concentrations but may interfere with cell functions and differentiation. Internalization of ND by these cells in a time- and dose-dependent manner was mostly via phagocytosis and clathrin-dependent endocytosis and localized to the cytoplasm but not into the nucleus. No significant induction of …


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao Jan 2023

Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao

Electrical & Computer Engineering Faculty Publications

High-intensity nanosecond pulse electric fields (nsPEF) can preferentially induce various effects, most notably regulated cell death and tumor elimination. These effects have almost exclusively been shown to be associated with nsPEF waveforms defined by pulse duration, rise time, amplitude (electric field), and pulse number. Other factors, such as low-intensity post-pulse waveform, have been completely overlooked. In this study, we show that post-pulse waveforms can alter the cell responses produced by the primary pulse waveform and can even elicit unique cellular responses, despite the primary pulse waveform being nearly identical. We employed two commonly used pulse generator designs, namely the Blumlein …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


An Xai Approach For Covid-19 Detection Using Transfer Learning With X-Ray Images, Salih Sarp, Ferhat Ozgur Catak, Murat Kuzlu, Umit Cali, Huseyin Kusetogullari, Yanxiao Zhao, Gungor Ates, Ozgur Guler Jan 2023

An Xai Approach For Covid-19 Detection Using Transfer Learning With X-Ray Images, Salih Sarp, Ferhat Ozgur Catak, Murat Kuzlu, Umit Cali, Huseyin Kusetogullari, Yanxiao Zhao, Gungor Ates, Ozgur Guler

Engineering Technology Faculty Publications

The coronavirus disease (COVID-19) has continued to cause severe challenges during this unprecedented time, affecting every part of daily life in terms of health, economics, and social development. There is an increasing demand for chest X-ray (CXR) scans, as pneumonia is the primary and vital complication of COVID-19. CXR is widely used as a screening tool for lung-related diseases due to its simple and relatively inexpensive application. However, these scans require expert radiologists to interpret the results for clinical decisions, i.e., diagnosis, treatment, and prognosis. The digitalization of various sectors, including healthcare, has accelerated during the pandemic, with the use …


Evaluation Of Cold Atmospheric Plasma For The Decontamination Of Flexible Endoscopes, R. C. Hervé, Michael G. Kong, Sudhir Bhatt, Hai-Lan Chen, E. E. Comoy, J-P. Deslys, T. J. Secker, C. W. Keevil Jan 2023

Evaluation Of Cold Atmospheric Plasma For The Decontamination Of Flexible Endoscopes, R. C. Hervé, Michael G. Kong, Sudhir Bhatt, Hai-Lan Chen, E. E. Comoy, J-P. Deslys, T. J. Secker, C. W. Keevil

Bioelectrics Publications

Background: Despite adherence to standard protocols, residues including live microorganisms may remain on the various surfaces of reprocessed flexible endoscopes. Prions are infectious proteins notoriously difficult to eliminate.

Aim: We tested the potential of cold atmospheric plasma (CAP) for the decontamination of flexible endoscope various surfaces, measuring total proteins and prion-residual infectivity as an indicator of efficacy.

Methods: New PTFE endoscope channels and metal test surfaces spiked with test soil or prion-infected tissues were treated using different CAP-generating prototypes. Surfaces were then examined for the presence of residues using very sensitive fluorescence epi-microscopy. Prion residual infectivity was determined using the …


Editorial: Pulsed Electric Field Based Technologies For Oncology Applications, Siqi Guo, Gregor Sersa, Richard Heller Jan 2023

Editorial: Pulsed Electric Field Based Technologies For Oncology Applications, Siqi Guo, Gregor Sersa, Richard Heller

Bioelectrics Publications

No abstract provided.


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


Virtual Surgical Planning In Craniomaxillofacial Surgery: A Structured Review, Kaye Verlarde, Rentor Cafino, Armando Isla Jr., Karen Mae Ty, Xavier-Lewis Palmer, Lucas Potter, Larry Nadorra, Luchin Valrian Pueblos, Lemuel Clark Velasco Jan 2023

Virtual Surgical Planning In Craniomaxillofacial Surgery: A Structured Review, Kaye Verlarde, Rentor Cafino, Armando Isla Jr., Karen Mae Ty, Xavier-Lewis Palmer, Lucas Potter, Larry Nadorra, Luchin Valrian Pueblos, Lemuel Clark Velasco

Electrical & Computer Engineering Faculty Publications

Craniomaxillofacial (CMF) surgery is a challenging and very demanding field that involves the treatment of congenital and acquired conditions of the face and head. Due to the complexity of the head and facial region, various tools and techniques were developed and utilized to aid surgical procedures and optimize results. Virtual Surgical Planning (VSP) has revolutionized the way craniomaxillofacial surgeries are planned and executed. It uses 3D imaging computer software to visualize and simulate a surgical procedure. Numerous studies were published on the usage of VSP in craniomaxillofacial surgery. However, the researchers found inconsistency in the previous literature which prompted the …


Technology Adoption Of Computer-Aided Instruction In Healthcare: A Structured Review, Queenie Kate Cabanilla, Frevy Teofilo-Orencia, Rentor Cafino, Armando T. Isla Jr., Jehan Grace Maglaya, Xavier-Lewis Palmer, Lucas Potter, Dave E. Marcial, Lemuel Clark Velasco Jan 2023

Technology Adoption Of Computer-Aided Instruction In Healthcare: A Structured Review, Queenie Kate Cabanilla, Frevy Teofilo-Orencia, Rentor Cafino, Armando T. Isla Jr., Jehan Grace Maglaya, Xavier-Lewis Palmer, Lucas Potter, Dave E. Marcial, Lemuel Clark Velasco

Electrical & Computer Engineering Faculty Publications

Computer-Aided Instruction (CAI) is one of the interactive teaching methods that electronically presents instructional resources and enhances learner performance. In health settings, using CAI is one of the important ways to improve learners' knowledge and usefulness in their healthcare specialization yet there is still a lack of research that offers a comprehensive synthesis of investigating into the adoption of CAI in healthcare. This research aims to provide a comprehensive review of related literatures on the enablers and barriers for technology adoption of CAI in healthcare. 31 journals were analyzed and revealed that several studies were utilizing the Unified Theory of …


Pinch Force Generation During Scaling By Dental Professionals: A Systematic Review, Jessica R. Suedbeck, Emily A. Ludwig Jan 2023

Pinch Force Generation During Scaling By Dental Professionals: A Systematic Review, Jessica R. Suedbeck, Emily A. Ludwig

Dental Hygiene Faculty Publications

Objective

The objective of this review was to examine the impact of instrument designs on pinch force generation during scaling by dental professionals.

Methods

Three databases were utilized from September 2019 to November 2021 in addition to hand-searching specific journals and reference lists. Research articles that examined pinch force generation in dental professionals during scaling with manual instruments only were included. Bias was assessed in the individual articles.

Results

Six research articles were included with sample populations that varied from 12 to 24 participants. Four articles evaluated instrument designs in relation to pinch force generation during scaling by dental professionals. …


An Acute Respiratory Distress Syndrome Drug Development Collaboration Stimulated By The Virginia Drug Discovery Consortium, John S. Lazo, Ruben M.L. Colunga-Biancatelli, Pavel A. Solopov, John D. Catravas Jan 2023

An Acute Respiratory Distress Syndrome Drug Development Collaboration Stimulated By The Virginia Drug Discovery Consortium, John S. Lazo, Ruben M.L. Colunga-Biancatelli, Pavel A. Solopov, John D. Catravas

Bioelectrics Publications

The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, …


Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics, Matthew Bavuso, Noel Miller, Joshua M. Sill, Anca Dobrian, Ruben M. L. Colunga Biancatelli Jan 2023

Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics, Matthew Bavuso, Noel Miller, Joshua M. Sill, Anca Dobrian, Ruben M. L. Colunga Biancatelli

Bioelectrics Publications

Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more …


Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang Jan 2023

Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang

Chemistry & Biochemistry Faculty Publications

Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They …


Atlas-Based Shared-Boundary Deformable Multi-Surface Models Through Multi-Material And Two-Manifold Dual Contouring, Tanweer Rashid, Sharmin Sultana, Mallar Chakravarty, Michel Albert Audette Jan 2023

Atlas-Based Shared-Boundary Deformable Multi-Surface Models Through Multi-Material And Two-Manifold Dual Contouring, Tanweer Rashid, Sharmin Sultana, Mallar Chakravarty, Michel Albert Audette

Electrical & Computer Engineering Faculty Publications

This paper presents a multi-material dual “contouring” method used to convert a digital 3D voxel-based atlas of basal ganglia to a deformable discrete multi-surface model that supports surgical navigation for an intraoperative MRI-compatible surgical robot, featuring fast intraoperative deformation computation. It is vital that the final surface model maintain shared boundaries where appropriate so that even as the deep-brain model deforms to reflect intraoperative changes encoded in ioMRI, the subthalamic nucleus stays in contact with the substantia nigra, for example, while still providing a significantly sparser representation than the original volumetric atlas consisting of hundreds of millions of voxels. The …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …