Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Engineering

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez May 2015

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez

Raúl Ordóñez

Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function …


Effects Of Electrostatic Correlations On Electrokinetic Phenomena, Brian Storey, Martin Bazant Oct 2012

Effects Of Electrostatic Correlations On Electrokinetic Phenomena, Brian Storey, Martin Bazant

Brian Storey

The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture …


Editorial: Social Implications Of Technology- “Il Buono, Il Brutto, Il Cattivo”, Katina Michael Aug 2012

Editorial: Social Implications Of Technology- “Il Buono, Il Brutto, Il Cattivo”, Katina Michael

Professor Katina Michael

Late last year, IEEE SSIT was invited to put together a paper for the centennial edition of Proceedings of the IEEE that was published in May 2012. The paper titled, “Social Implications of Technology: The Past, the Present, and the Future,” brought together five members of SSIT with varying backgrounds, and two intense months of collaboration and exchange of ideas. I personally felt privileged to be working with Karl D. Stephan, Emily Anesta, Laura Jacobs and M.G. Michael on this project.


On An Orthogonal Space-Time-Polarization Block Code, Beata Wysocki, Tadeusz Wysocki, Sarah Adams Jul 2012

On An Orthogonal Space-Time-Polarization Block Code, Beata Wysocki, Tadeusz Wysocki, Sarah Adams

Sarah Spence Adams

Over the past several years, diversity methods such as space, time, and polarization diversity have been successfully implemented in wireless communications systems. Orthogonal space-time block codes efficiently combine space and time diversity, and they have been studied in detail. Polarization diversity has also been studied, however it is usually considered in a simple concatenation with other coding methods. In this paper, an efficient method for incorporating polarization diversity with space and time diversity is studied. The simple yet highly efficient technique is based on extending orthogonal space-time block codes into the quaternion domain and utilizing a description of the dual-polarized …


Novel Constructions Of Improved Square Complex Orthogonal Designs For Eight Transmit Antennas, Le Chung Tran, Tadeusz Wysocki, Jennifer Seberry, Alfred Mertins, Sarah Adams Jul 2012

Novel Constructions Of Improved Square Complex Orthogonal Designs For Eight Transmit Antennas, Le Chung Tran, Tadeusz Wysocki, Jennifer Seberry, Alfred Mertins, Sarah Adams

Sarah Spence Adams

Constructions of square, maximum rate complex orthogonal space-time block codes (CO STBCs) are well known, however codes constructed via the known methods include numerous zeros, which impede their practical implementation. By modifying the Williamson and Wallis-Whiteman arrays to apply to complex matrices, we propose two methods of construction of square, order-4n CO STBCs from square, order-n codes which satisfy certain properties. Applying the proposed methods, we construct square, maximum rate, order-8 CO STBCs with no zeros, such that the transmitted symbols are equally dispersed through transmit antennas. Those codes, referred to as the improved square CO STBCs, have the advantages …


An Extension Of The Channel-Assignment Problem: L(2, 1)-Labelings Of Generalized Petersen Graphs, Sarah Adams, Jonathan Cass, Denise Troxell Jul 2012

An Extension Of The Channel-Assignment Problem: L(2, 1)-Labelings Of Generalized Petersen Graphs, Sarah Adams, Jonathan Cass, Denise Troxell

Sarah Spence Adams

The channel-assignment problem involves assigning frequencies represented by nonnegative integers to radio transmitters such that transmitters in close proximity receive frequencies that are sufficiently far apart to avoid interference. In one of its variations, the problem is commonly quantified as follows: transmitters separated bythe smallest unit distance must be assigned frequencies that are at least two apart and transmitters separated by twice the smallest unit distance must be assigned frequencies that are at least one apart. Naturally, thischannel-assignment problem can be modeled with vertex labelings of graphs. An L(2, 1)-labeling of a graph G is a function f from the …


Quaternion Orthogonal Designs From Complex Companion Designs, Sarah Adams, Jennifer Seberry, Nathaniel Karst, Jonathan Pollack, Tadeusz Wysocki Jul 2012

Quaternion Orthogonal Designs From Complex Companion Designs, Sarah Adams, Jennifer Seberry, Nathaniel Karst, Jonathan Pollack, Tadeusz Wysocki

Sarah Spence Adams

The success of applying generalized complex orthogonal designs as space–time block codes recently motivated the definition of quaternion orthogonal designs as potential building blocks for space–time-polarization block codes. This paper offers techniques for constructing quaternion orthogonal designs via combinations of specially chosen complex orthogonal designs. One technique is used to build quaternion orthogonal designs on complex variables for any even number of columns. A second related technique is applied to maximum rate complex orthogonal designs to generate an infinite family of quaternion orthogonal designs on complex variables such that the resulting designs have no zero entries. This second technique is …


The Final Case Of The Decoding Delay Problem For Maximum Rate Complex Orthogonal Designs, Sarah Adams, Nathaniel Karst, Mathav Murugan Jul 2012

The Final Case Of The Decoding Delay Problem For Maximum Rate Complex Orthogonal Designs, Sarah Adams, Nathaniel Karst, Mathav Murugan

Sarah Spence Adams

Complex orthogonal space-time block codes (COSTBCs) based on generalized complex orthogonal designs (CODs) have been successfully implemented in wireless systems with multiple transmit antennas and single or multiple receive antennas. It has been shown that for a maximum rate COD with 2m-1 or 2m columns, a lower bound on decoding delay is (m-1 2m) and this delay is achievable when the number of columns is congruent to 0, 1 , or 3 modulo 4. In this paper, the final case is addressed, and it is shown that when the number of columns is congruent to 2 modulo 4, the lower …


Trajectory Generation In High-Speed, High-Precision Micromilling Using Subdivision Surfaces, Athulan Vijayaraghavan, Angela Sodemann, Aaron Hoover, J. Mayor, David Dornfeld Jul 2012

Trajectory Generation In High-Speed, High-Precision Micromilling Using Subdivision Surfaces, Athulan Vijayaraghavan, Angela Sodemann, Aaron Hoover, J. Mayor, David Dornfeld

Aaron M. Hoover

Motion control in high-speed micromilling processes requires fast, accurate following of a specified curvilinear path. The accuracy with which the path can be followed is determined by the speed at which individual trajectories can be generated and sent to the control system. The time required to generate the trajectory is dependent on the representations used for the curvilinear trajectory path. In this study, we introduce the use of subdivision curves as a method for generating high-speed micromilling trajectories. Subdivision curves are discretized curves which are specified as a series of recursive refinements of a coarse mesh. By applying these recursive …


Synthesis Of Static And Dynamic Multiple-Input Translinear Element Networks, Bradley Minch Jul 2012

Synthesis Of Static And Dynamic Multiple-Input Translinear Element Networks, Bradley Minch

Bradley Minch

In this paper, we discuss the process of synthesizing static and dynamic multiple-input translinear element (MITE) networks systematically from high-level descriptions given in the time domain, in terms of static polynomial constraints and algebraic differential equations. We provide several examples, illustrating the process for both static and dynamic system constraints. Although our examples will all involve MITE networks, the early steps of the synthesis process are equally applicable to the synthesis of static and dynamic translinear-loop circuits.


A Parameterized Stereo Vision Core For Fpgas, Mark Chang, Stephen Longfield Jul 2012

A Parameterized Stereo Vision Core For Fpgas, Mark Chang, Stephen Longfield

Mark L. Chang

We present a parameterized stereo vision core suitable for a wide range of FPGA targets and stereo vision applications. By enabling easy tuning of algorithm parameters, our system allows for rapid exploration of the design space and simpler implementation of high-performance stereo vision systems. This implementation utilizes the census transform algorithm to calculate depth information from a pair of images delivered from a simulated stereo camera pair. This work advances our previous work through implementation improvements, a stereo camera pair simulation framework, and a scalable stereo vision core.


Precis: A Usercentric Word-Length Optimization Tool, Mark Chang, Scott Hauck Jul 2012

Precis: A Usercentric Word-Length Optimization Tool, Mark Chang, Scott Hauck

Mark L. Chang

Translating an algorithm designed for a general-purpose processor into an algorithm optimized for custom logic requires extensive knowledge of the algorithm and the target hardware. Precis lets designers analyze the precision requirements of algorithms specified in Matlab. The design time tool combines simulation, user input, and program analysis to help designers focus their manual precision optimization efforts.


Low-Cost Stereo Vision On An Fpga, Chris A. Murphy, Daniel Lindquist, Ann Marie Rynning, Thomas Cecil, Sarah Leavitt, Mark L. Chang Jul 2012

Low-Cost Stereo Vision On An Fpga, Chris A. Murphy, Daniel Lindquist, Ann Marie Rynning, Thomas Cecil, Sarah Leavitt, Mark L. Chang

Mark L. Chang

We present a low-cost stereo vision implementation suitable for use in autonomous vehicle applications and designed with agricultural applications in mind. This implementation utilizes the Census transform algorithm to calculate depth maps from a stereo pair of automotive-grade CMOS cameras. The final prototype utilizes commodity hardware, including a Xilinx Spartan-3 FPGA, to process 320times240 pixel images at greater than 150 frames per second and deliver them via a USB 2.0 interface.


Automated Least-Significant Bit Datapath Optimization For Fpgas, Mark L. Chang, Scott Hauck Jul 2012

Automated Least-Significant Bit Datapath Optimization For Fpgas, Mark L. Chang, Scott Hauck

Mark L. Chang

In this paper, we present a method for FPGA datapath precision optimization subject to user-defined area and error constraints. This work builds upon our previous research which presented a methodology for optimizing the dynamic range- the most significant bit position. In this work, we present an automated optimization technique for the least-significant bit position of circuit datapaths. We present results describing the effectiveness of our methods on typical signal and image processing kernels.


Interactionless Calendar-Based Training For 802.11 Localization, Mark Chang, Andrew J. Barry, Noah L. Tye Jul 2012

Interactionless Calendar-Based Training For 802.11 Localization, Mark Chang, Andrew J. Barry, Noah L. Tye

Mark L. Chang

This paper presents our work in solving one of the weakest links in 802.11-based indoor-localization: the training of ground-truth received signal strength data. While crowdsourcing this information has been demonstrated to be a viable alternative to the time consuming and accuracy-limited process of manual training, one of the chief drawbacks is the rate at which a system can be trained. We demonstrate an approach that utilizes users' calendar and appointment information to perform interactionless training of an 802.11-based indoor localization system. Our system automatically determines if a user attended a calendar event, resulting in accuracy comparable to our previously published …


'Kinetic Sculptures': A Centerpiece Project Integrated With Mathematics And Physics, Yevgeniya Zastavker, Jill Crisman, Mark Jeunnette, Burt Tilley Jul 2012

'Kinetic Sculptures': A Centerpiece Project Integrated With Mathematics And Physics, Yevgeniya Zastavker, Jill Crisman, Mark Jeunnette, Burt Tilley

Yevgeniya V. Zastavker

An integrated set of courses, or Integrated Course Block (ICB), developed for incoming first-year students at the Franklin W. Olin College of Engineering, is presented. Bound by a common theme of `Kinetic Sculptures', the individual courses in this ICB are mathematics (single variable calculus and ordinary differential equations), physics (kinetics and dynamics of linear and rotational motion, thermodynamics and fluids), and an open-ended engineering project. The project part of the ICB allows students to explore the motion through the design of kinetic (moving) sculptures while utilizing the mathematics and physics concepts learned in the accompanying courses. This paper considers the …


Analysis Of Segmentation Algorithms For Pavement Distress Images, Allen Downey, Haris N. Koutsopoulos, Ibrahim El Sanhouri Jun 2012

Analysis Of Segmentation Algorithms For Pavement Distress Images, Allen Downey, Haris N. Koutsopoulos, Ibrahim El Sanhouri

Allen B. Downey

Collection and analysis of pavement distress data is an important component of any pavement‐management system. Various systems are currently under development that automate this process. They consist of appropriate hardware for the acquisition of pavement distress images and, in some cases, software for the analysis of the collected data. An important step in the automatic interpretation of images is segmentation, the process of extracting the objects of interest (distresses) from the background. We examine algorithms for segmenting pavement images and evaluate their effectiveness in separating the distresses from the background. The methods examined include the Otsu method, Kittler's method, a …


Primitive-Based Classification Of Pavement Cracking Images, Allen Downey Jun 2012

Primitive-Based Classification Of Pavement Cracking Images, Allen Downey

Allen B. Downey

Collection and analysis of pavement distress data are receiving attention for their potential to improve the quality of information on pavement condition. We present an approach for the automated classificaton of asphalt pavement distresses recorded on video or photographic film. Based on a model that describes the statistical properties of pavement images, we develop algorithms for image enhancement, segmentation, and distress classification. Image enhancement is based on subtraction of an “average” background: segmentation assigns one of four possible values to pixels based on their likelihood of belonging to the object. The classification approach proceeds in two steps: in the first …


Experimental Evaluation Of Turbine Blade With Potassium Evaporative Cooling, Jessica Townsend Apr 2012

Experimental Evaluation Of Turbine Blade With Potassium Evaporative Cooling, Jessica Townsend

Jessica Townsend

A new method of turbine blade cooling, the Return Flow Cascade, has been developed in which vaporization of a liquid metal such as potassium is used to maintain the blade surface at a nearly uniform temperature. Turbine blades cooled using this technology have lower blade temperature levels compared to that available with conventional air cooling, potentially resulting in higher firing temperatures or a choice of a wider range of materials for the hot gas path. The detailed operation of the Return Flow Cascade is described including fluid mechanic and heat transfer phenomena that occur at high heat flux and gravitational …


Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr Mar 2012

Bistability In A Simple Fluid Network Due To Viscosity Contrast, John Geddes, Brian Storey, David Gardner, Russell Carr

Brian Storey

We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity—sucrose solution and water. Possible applications include blood flow, microfluidics, and other network flows governed by similar principles.


A Depth-Averaged Electrokinetic Flow Model For Shallow Microchannels, Hao Lin, Brian D. Storey, Juan G. Santiago Mar 2012

A Depth-Averaged Electrokinetic Flow Model For Shallow Microchannels, Hao Lin, Brian D. Storey, Juan G. Santiago

Brian Storey

Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy–Brinkman–Forchheimer-type …


Instability Of Electro-Osmotic Channel Flow With Streamwise Conductivity Gradients, Jose Santos, Brian D. Storey Mar 2012

Instability Of Electro-Osmotic Channel Flow With Streamwise Conductivity Gradients, Jose Santos, Brian D. Storey

Brian Storey

This work considers the stability of an electro-osmotic microchannel flow with streamwise electrical conductivity gradients, a configuration common in microfluidic applications such as field amplified sample stacking. Previous work on such flows has focused on how streamwise conductivity gradients set a nonuniform electro-osmotic velocity which results in dispersion of the conductivity field. However, it has been known for many years that electric fields can couple with conductivity gradients to generate unstable flows. This work demonstrates that at high electric fields such an electrohydrodynamic instability arises in this configuration and the basic mechanisms are explored through numerical simulations. The instability is …


Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee Edwards, Mustafa Sabri Kilic, Martin Z. Bazant Mar 2012

Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee Edwards, Mustafa Sabri Kilic, Martin Z. Bazant

Brian Storey

The current theory of alternating-current electro-osmosis (ACEO) is unable to explain the experimentally observed flow reversal of planar ACEO pumps at high frequency (above the peak, typically 10–100 kHz), low salt concentration (1–1000 μM), and moderate voltage (2–6 V), even taking into account Faradaic surface reactions, nonlinear double-layer capacitance, and bulk electrothermal flows. We attribute this failure to the breakdown of the classical Poisson-Boltzmann model of the diffuse double layer, which assumes a dilute solution of pointlike ions. In spite of low bulk salt concentration, the large voltage induced across the double layer leads to crowding of the ions and …


Rayleigh-Taylor Instability Of Violently Collapsing Bubbles, Hao Lin, Brian D. Storey, Andrew J. Szeri Mar 2012

Rayleigh-Taylor Instability Of Violently Collapsing Bubbles, Hao Lin, Brian D. Storey, Andrew J. Szeri

Brian Storey

In a classical paper Plesset has determined conditions under which a bubble changing in volume maintains a spherical shape. The stability analysis was further developed by Prosperetti to include the effects of liquid viscosity on the evolving shape modes. In the present work the theory is further modified to include the changing density of the bubble contents. The latter is found to be important in violent collapses where the densities of the gas and vapor within a bubble may approach densities of the liquid outside. This exerts a stabilizing influence on the Rayleigh–Taylor mechanism of shape instability of spherical bubbles. …


Bulk Electroconvective Instability At High Péclet Numbers, Brian D. Storey, Boris Zaltzman, Isaak Rubinstein Mar 2012

Bulk Electroconvective Instability At High Péclet Numbers, Brian D. Storey, Boris Zaltzman, Isaak Rubinstein

Brian Storey

Bulk electroconvection pertains to flow induced by the action of a mean electric field upon the residual space charge in the macroscopic regions of a locally quasielectroneutral strong electrolyte. For a long time, controversy has existed in the literature as to whether quiescent electric conduction from such an electrolyte into a uniform charge-selective solid, such as a metal electrode or ion exchange membrane, is stable with respect to bulk electroconvection. While it was recently claimed that bulk electroconvective instability could not occur, this claim pertained to an aqueous, low-molecular-weight electrolyte characterized by an order-unity electroconvection Péclet number. In this paper, …


Field-Amplified Sample Stacking And Focusing In Nanofluidic Channels, Jess M. Sustarich, Brian D. Storey, Sumita Pennathur Mar 2012

Field-Amplified Sample Stacking And Focusing In Nanofluidic Channels, Jess M. Sustarich, Brian D. Storey, Sumita Pennathur

Brian Storey

Nanofluidic technology is gaining popularity for bioanalytical applications due to advances in both nanofabrication and design. One major obstacle in the widespread adoption of such technology for bioanalytical systems is efficient detection of samples due to the inherently low analyte concentrations present in such systems. This problem is exacerbated by the push for electronic detection, which requires an even higher sensor-local sample concentration than optical detection. This paper explores one of the most common preconcentration techniques, field-amplified sample stacking, in nanofluidic systems in efforts to alleviate this obstacle. Holding the ratio of background electrolyte concentrations constant, the parameters of channel …


Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr. Jun 2011

Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr.

David V. Kerns

We present a generalized study of light emission from reverse biased p–n junctions under avalanche breakdown conditions. A model is developed based on direct and indirect interband processes including self-absorption to describe measured electroluminescence spectra. This model was used to analyze experimental data for silicon (Si) and gallium arsenide p–n junctions and can be extended to several types of semiconductors regardless of their band gaps. This model can be used as a noninvasive technique for the determination of the junction depth. It has also been used to explain the observed changes of the Si p–n junction electroluminescence spectra after fast …


Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi (Adjunct), A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra E. Kerns, David V. Kerns, Jr. Jun 2011

Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi (Adjunct), A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra E. Kerns, David V. Kerns, Jr.

Sherra E. Kerns

We present a generalized study of light emission from reverse biased p–n junctions under avalanche breakdown conditions. A model is developed based on direct and indirect interband processes including self-absorption to describe measured electroluminescence spectra. This model was used to analyze experimental data for silicon (Si) and gallium arsenide p–n junctions and can be extended to several types of semiconductors regardless of their band gaps. This model can be used as a noninvasive technique for the determination of the junction depth. It has also been used to explain the observed changes of the Si p–n junction electroluminescence spectra after fast …


Making The Human Dimensions Of Sustainable Community Development Visible To Engineers, Juan Lucena, Jen Schneider, Jon A. Leydens Mar 2011

Making The Human Dimensions Of Sustainable Community Development Visible To Engineers, Juan Lucena, Jen Schneider, Jon A. Leydens

Jen Schneider

Recently, engineers – particularly those working on sustainability-related initiatives – have increasingly turned their efforts towards under-served communities. This paper summarises the findings in Engineering and Sustainable Community Development (Juan Lucena et al., 2010) aimed at a diversity of these efforts which are grouped here under the term ‘engineering to help’. These initiatives often exist under names such as community service, humanitarian engineering, and engineers without borders or activities such as the Institution of Civil Engineers' co-sponsored workshop ‘Helping local communities to help themselves’. Although there has been a blossoming of engineering-to-help-related programmes around the world, there is a …


Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein Jan 2011

Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein

Brett VanVeller

Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an aqueous SDS solution induces …