Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison Jan 2021

Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison

International Journal of Aviation, Aeronautics, and Aerospace

The aerospike engine was first devised in the early 1960s where it provided new means of reaching orbit in a single stage. The paper aimes to demonstrate the viability of the technology by showcasing the increased nozzle thrust efficiency over the conventional bell nozzle. Various truncations were applied to the nozzle and each was subjected to two conditions, an over-expansion and near optimum condition. The nozzle contour was developed using the simple approximation method and was chosen to replicate that of the XRS-2200. This anchored the data, thereby validating the computational fluid dynamics (CFD) simulation. Simulations were completed for at …


Design Of A Laboratory Annular Combustor, Sathish Dharmalingam, Kartik Dolarkumar Kothari Jan 2021

Design Of A Laboratory Annular Combustor, Sathish Dharmalingam, Kartik Dolarkumar Kothari

International Journal of Aviation, Aeronautics, and Aerospace

Combustion lies at the heart of gas turbine technology. The combustor is the power source that aids the acceleration of flight. It provides the core functionality of adding heat through the controlled burn of the air-fuel mixture, converted into mechanical energy with the help of turbines. This extracted power has been used to produce thrust in the case of aircraft or to produce electrical energy in the case of industrial gas turbines. Designing an annular combustor involves a rigorous iterative process, and there is no systematic procedure available to design a small-scale laboratory combustor, used for research and academic purposes. …


Small Unmanned Aircraft Systems Acoustic Analysis For Noninvasive Marine Mammal Response: An Exploratory Field Study, David Thirtyacre, Gennifer Brookshire, Sarah Callan, Brittany Arvizu, Patrick Sherman Jan 2021

Small Unmanned Aircraft Systems Acoustic Analysis For Noninvasive Marine Mammal Response: An Exploratory Field Study, David Thirtyacre, Gennifer Brookshire, Sarah Callan, Brittany Arvizu, Patrick Sherman

International Journal of Aviation, Aeronautics, and Aerospace

As in countless other fields of human endeavor, small unmanned aircraft systems (sUAS) have the potential to benefit pinniped (Pinnipedia; e.g., Phocidae [seals], Otariidae [sea lions], and Odobenidae [walruses]) response efforts. The employment of sUAS could give responders a close-up look at animals in distress in order to determine their condition as well as develop a response strategy. However, unlike other subjects that are regularly inspected by sUAS (e.g., croplands and civil infrastructure) pinnipeds may respond to the distinctive sound generated by small, multirotor sUAS. This reaction may include retreating into the water en masse, which could put …


Active Fault-Tolerance Of The Unmanned Aerial Vehicle Automatic Control Systems, Vuong Anh Trung, Nguyen Van Thinh, Nguyen Duc Thanh, Nguyen Quang Vinh, Tran Thuan Hoang Jan 2020

Active Fault-Tolerance Of The Unmanned Aerial Vehicle Automatic Control Systems, Vuong Anh Trung, Nguyen Van Thinh, Nguyen Duc Thanh, Nguyen Quang Vinh, Tran Thuan Hoang

International Journal of Aviation, Aeronautics, and Aerospace

This paper presents an introductory overview of principles of the three-layer hierarchy of active fault-tolerance, providing, determination of the fault type with as many details as enough to get recoverable fault reason and failure toleration by flexible redundancy using; the conception of active fault-tolerant control in abnormal modes is described. Developed models and methods of a systematic approach to fault tolerance in the direction of the effective use of the signal, parametric and structural redundancies and selection of parrying tools. Performed experimental researches of the unmanned aerial vehicle (UAV) automatic control systems (ACS).


Performance Characteristics Design Of Pulsed Plasma Thrusters For Drag Counter-Reacting, Dr. Sam Dakka Jan 2020

Performance Characteristics Design Of Pulsed Plasma Thrusters For Drag Counter-Reacting, Dr. Sam Dakka

International Journal of Aviation, Aeronautics, and Aerospace

Determining the performance characteristics of off the shelf pulsed plasma thrusters to enhance the life time of low earth orbiting platforms was investigated theoretically. Pulsed plasma thruster analysis was accomplished through development of correlations from historical data that distinguished between breech fed propellant to side fed propellant designs. Based on semi-empirical equations the power required by the thruster to counter react the drag was estimated and mapped for 1U to 27U CubeSat configurations for altitude ranging between 200km to 600km. It appears that the power required is dependent on the feeding delivery system design. For side fed designs the power …


Satellite Maintenance: An Opportunity To Minimize The Kessler Effect, Bettina M. Mrusek Dr. Jan 2019

Satellite Maintenance: An Opportunity To Minimize The Kessler Effect, Bettina M. Mrusek Dr.

International Journal of Aviation, Aeronautics, and Aerospace

Recently, there has been an emphasis on the growing problem of orbital debris. While the advantages of placing satellites into space are numerous, advances in satellite technology combined with the growth of the industry have resulted with a significant amount of debris in the orbits surrounding our planet. The harshness of the space environment has also contributed to the debris, as evidenced by the number of objects currently in orbit which are not operational. As the amount of debris grows, so too does the likelihood of collisions, ultimately culminating in the Kessler Effect. However, recent advances in propulsion, advanced navigation, …


Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul Jan 2019

Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul

International Journal of Aviation, Aeronautics, and Aerospace

Abstract:

During the last years, several thrust control systems of aerospace rocket engines have been developed. The fluidic thrust vectoring is one of them; it is simple in design and offers a substantial gain in weight and in performance. Most of studies related to this device were carried out with cold gas. It’s quite legitimate to expect that the thermophysical properties of the gases may affect considerably the flow behavior. Besides, the effects of reacting gases at high temperatures, under their effects all flow parameters like to vary.

This study aims to develop a new methodology that allows studying and …


Simulations On Optimization Of Liquid Spray Burners & Operating Parameters, Pallavi Gajjar, Vinayak Malhotra Jan 2019

Simulations On Optimization Of Liquid Spray Burners & Operating Parameters, Pallavi Gajjar, Vinayak Malhotra

International Journal of Aviation, Aeronautics, and Aerospace

Spray burners form an essential part of any liquid propulsion system as they are responsible for injecting, atomizing, mixing and combusting the liquid fuel. Spray combustion used in aerospace applications like the liquid rocket engines, gas turbines or any other controlled environment for that matter places a huge emphasis on safe and effective operations. These applications make use of relatively small amounts of propellant volumes to generate enormous amounts of energy through combustion for producing thrust. For such cases involving enormous energy interactions, combustion comes with its own set of challenges. The predominant challenge among them all is that of …


Optimization And Analysis Of An Elite Electric Propulsion System, Mehakveer Singh, Kapil Yadav, Satnam Singh, Vikas Chumber, Harikrishna Chavhan Jan 2019

Optimization And Analysis Of An Elite Electric Propulsion System, Mehakveer Singh, Kapil Yadav, Satnam Singh, Vikas Chumber, Harikrishna Chavhan

International Journal of Aviation, Aeronautics, and Aerospace

Abstract- Electric propulsion has a promising system to create new possibilities in this technological era as well as control the harmful gaseous emission. This paper put a vision on several parameters of electric propulsion. The engine’s performance is comparable to the current propulsion devices and provides a lightweight solution to the robust technologies’ dependent on chemical energy sources. There are a plethora of factors which is enhanced by electric propulsion such as, overall efficiency, capabilities, and robustness of future air vehicles as well as mainly overcome from exhaust hazards. Electric propulsion systems have the potential of utilizing the electrically-driven propulsion …


Ultrafine Aluminium: Quench Collection Of Agglomerates, Tejasvi K, Y Pydi Setty, Vemana Venkateswara Rao Jan 2019

Ultrafine Aluminium: Quench Collection Of Agglomerates, Tejasvi K, Y Pydi Setty, Vemana Venkateswara Rao

International Journal of Aviation, Aeronautics, and Aerospace

Combustion of aluminized solid propellants exhibits phenomena associated with accumulation, agglomeration, ignition, and combustion of ultra-fine aluminium particles. In this study, agglomeration phenomenon of ultra-fine aluminium in solid propellant combustion is investigated using quench collection experimental technique over the pressure ranges from 2MPa to 8MPa. The ultra-fine aluminium powder synthesized by Radio Frequency Induction Plasma technique having harmonic mean size of 438nm is used for agglomeration study. The quenching distance is varied from 5mm to 71mm from the propellant burning surface to estimate the effect on agglomerate size. The morphology and chemical compositions of the collected products were then studied …


A Thrust Equation Treats Propellers And Rotors As Aerodynamic Cycles And Calculates Their Thrust Without Resorting To The Blade Element Method, Phillip -. Burgers Jan 2019

A Thrust Equation Treats Propellers And Rotors As Aerodynamic Cycles And Calculates Their Thrust Without Resorting To The Blade Element Method, Phillip -. Burgers

International Journal of Aviation, Aeronautics, and Aerospace

The lift generated by a translating wing of known translational speed, lift coefficient and area is calculated by a simple equation. A propeller or rotor generating thrust share the same aerodynamic principles but their different kinematics cause the calculation of their thrust to be laborious. This paper derives a thrust equation from an algebraic expansion of the Prandtl’s dynamic pressure term qby adding the rotational kinetic energy of a propeller or rotor to the existing translational kinetic energy term. This thrust equation can be applied directly to propellers and rotors and assumes these to operate as cycles with …


Application Of Artificial Neural Networks For The Prediction Of Aluminium Agglomeration Processes, Tejasvi K, Y Pydi Setty, Vemana Venkateswara Rao, Kalyan Chakarvarthy Jan 2018

Application Of Artificial Neural Networks For The Prediction Of Aluminium Agglomeration Processes, Tejasvi K, Y Pydi Setty, Vemana Venkateswara Rao, Kalyan Chakarvarthy

International Journal of Aviation, Aeronautics, and Aerospace

Aluminium is universal and vital constituent in composite propellants and typically used to improve performance. Aluminum agglomeration takes place on the burning surface of aluminized propellants, which leads to reduced combustion efficiency and 2P flow losses. To understand the processes and behaviour of aluminum agglomeration, particles size distribution of composite propellants were studied using a quench particle collection technique, at 2 to 8 MPa and varying quench distances from 5mm to 71mm. To predict the agglomerate diameter of metallized/ultra-fine aluminium of composite propellants, a new artificial neural network (ANN) model was derived. Five Layered Feed Forward Back Propagation Neural Network …


Blended Wing Body Propulsion System Design, Parth Kumar, Adeel Khalid Oct 2017

Blended Wing Body Propulsion System Design, Parth Kumar, Adeel Khalid

International Journal of Aviation, Aeronautics, and Aerospace

This research paper focuses on the optimization of the propulsion system of a blended wing body design. Two different aspects of the design, the engine placement and count, and the engine itself, are investigated. The preliminary wing of the BWB is created through aerodynamic analysis, and is kept as a constant over the different propulsion system configurations. The engine parameters are first investigated. Equations are derived to express takeoff distance and climb rate as a function of engine sea level thrust, cruise thrust, and the number of engines. Nearly 150 different engine models, in BWB configurations of 2, 3, 4, …


Achieving Global Range In Future Subsonic And Supersonic Airplanes, Nihad E. Daidzic Ph.D., Sc.D. Nov 2014

Achieving Global Range In Future Subsonic And Supersonic Airplanes, Nihad E. Daidzic Ph.D., Sc.D.

International Journal of Aviation, Aeronautics, and Aerospace

No commercial airplane in service today is able to fly half great-circle distances over the globe and achieve the non-stop or the global range to any antipodal location on Earth. A subsonic jetliner has the optimum cruising speed at Mach numbers approaching the drag divergence Mach number while still preserving relatively high aerodynamic efficiency. Various fuel-flow laws were used to investigate the cruise performance of subsonic and supersonic aircraft. The effect of wind and aircraft weight and how it affects the optimal cruising airspeed was investigated. Of all different operational cruising techniques, the cruise-climb at high Mach numbers is the …