Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Experimental Evaluation Of Strength Degradation Temperature For Carbon Epoxy Filament Wound Composite, Jai Krishna Mishra, Surya Prakash Rao Ch Dr, Subhash Chandra Bose P Dr, Kishore Nath N Dr, Rama Rao Golla Mr Jan 2020

Experimental Evaluation Of Strength Degradation Temperature For Carbon Epoxy Filament Wound Composite, Jai Krishna Mishra, Surya Prakash Rao Ch Dr, Subhash Chandra Bose P Dr, Kishore Nath N Dr, Rama Rao Golla Mr

International Journal of Aviation, Aeronautics, and Aerospace

Polymeric composites have been widely used in various structural and thermal aerospace applications. Polymeric composites having high strength and high modulus reinforcement are ideally suited for lot of critical aerospace applications as structure is designed with high specific strength and high specific modulus. In case of launch vehicles/ missile one such application is design and manufacturing of solid rocket motor casing with polymeric composites as it give high performance and reduces inert weight of propulsion system. The high specific strength and high specific modulus of composite materials makes it ideal choice for designing the composite rocket motor case (CRMC). These …


3d Textile Preforms And Composites For Aircraft Strcutures: A Review, Abbasali Saboktakin Jan 2019

3d Textile Preforms And Composites For Aircraft Strcutures: A Review, Abbasali Saboktakin

International Journal of Aviation, Aeronautics, and Aerospace

Over the last decades, the development of 3D textile composites has been driven the structures developed to overcome disadvantages of 2D laminates such as the needs of reducing fabrication cost, increasing through-thickness mechanical properties, and improving impact damage tolerance. 3D woven, stitched, knitted and braided preforms have been used as composites reinforcement for these types of composites. In this paper, advantages and disadvantages of each of them have been comprehensively discussed. The fabric architects and their specification in particular stitched preforms and their deformation mode for aerospace applications have been reviewed. Exact insight into various types of damage in textile …


Comparison Of Flow Field In The Proximity Of A Single Planar & Wrap-Around Fin, Nayhel Sharma, Palak Saini, Hrishabh Chaudhary, Gurteg Nagi, Rakesh Kumar Dr. Jan 2019

Comparison Of Flow Field In The Proximity Of A Single Planar & Wrap-Around Fin, Nayhel Sharma, Palak Saini, Hrishabh Chaudhary, Gurteg Nagi, Rakesh Kumar Dr.

International Journal of Aviation, Aeronautics, and Aerospace

Abstract

This paper analyses the results of the computational analysis between a single planar and a wrap-around fin mounted on a semi-cylindrical body. A free-stream Computational Fluid Dynamics (CFD) model was simulated for both cases in the Mach 0.4-3.0M range at 0°Angle of attack, in which, the behavior of flow around the fin was investigated using a turbulence model of higher order discretization. The post-processing shows all the possible views of the flow dynamics around the fins, as well as the missile body. The aerodynamic drag and the rolling moment characteristics of the planar and the wrap-around fin have been …


Computational Study Of Flow Interactions Over A Close Coupled Canard-Wing On Fighter, Setyawan Bekti Wibowo, Sutrisno Sutrisno, Tri Agung Rohmat Jan 2019

Computational Study Of Flow Interactions Over A Close Coupled Canard-Wing On Fighter, Setyawan Bekti Wibowo, Sutrisno Sutrisno, Tri Agung Rohmat

International Journal of Aviation, Aeronautics, and Aerospace

There have been many attempts to improve the flying performance of a fighter. By modifying the flow that occurs along the fuselage is expected to improve the performance of the aircraft. One of the indicators of combat aircraft performance is the ability to perform maneuver movement. Adding a canard as forewing on the fighter wing configuration is considered capable of raising the ability in maneuver movement. The use of canard-delta pairs will affect the performance and aerodynamic characteristics of the plane. Wings and canards with delta configuration will make the rolled-up vortex as a lifting force producer on the aircraft. …


Simulations On Optimization Of Liquid Spray Burners & Operating Parameters, Pallavi Gajjar, Vinayak Malhotra Jan 2019

Simulations On Optimization Of Liquid Spray Burners & Operating Parameters, Pallavi Gajjar, Vinayak Malhotra

International Journal of Aviation, Aeronautics, and Aerospace

Spray burners form an essential part of any liquid propulsion system as they are responsible for injecting, atomizing, mixing and combusting the liquid fuel. Spray combustion used in aerospace applications like the liquid rocket engines, gas turbines or any other controlled environment for that matter places a huge emphasis on safe and effective operations. These applications make use of relatively small amounts of propellant volumes to generate enormous amounts of energy through combustion for producing thrust. For such cases involving enormous energy interactions, combustion comes with its own set of challenges. The predominant challenge among them all is that of …


In-Flight Wingtip Folding: Inspiration From The Xb-70 Valkyrie, Gaétan X. Dussart, Mudassir Lone, Ciaran O'Rourke, Thomas Wilson Jan 2019

In-Flight Wingtip Folding: Inspiration From The Xb-70 Valkyrie, Gaétan X. Dussart, Mudassir Lone, Ciaran O'Rourke, Thomas Wilson

International Journal of Aviation, Aeronautics, and Aerospace

Wingip folding can be used to extend aircraft wingspan, allowing designers to take advantage of reduced induced drag whilst respecting ground operational limitations. Such devices can also be used in-flight for a variety of other benefits including load alleviation and flight control. The majority of in-flight folding research takes inspiration in past developments made on the XB-70 Valkyrie, which used the folding devices for stability and lift performance benefits. In this paper, the authors investigate the capabilities of the folding wingtip system and potential scaling to large civil aircraft. Manufacturing details are used to size the actuators whilst the aerodynamic …


Experimental Investigation Of A New Spiral Wingtip, Naseeb Ahmed Siddiqui, Mohamed Aldeeb, Waqar Asrar, Erwin Sulaeman Mar 2018

Experimental Investigation Of A New Spiral Wingtip, Naseeb Ahmed Siddiqui, Mohamed Aldeeb, Waqar Asrar, Erwin Sulaeman

International Journal of Aviation, Aeronautics, and Aerospace

Experiments on the relative merits and demerits of slotted wingtips mimicking a bird’s primary feathers have been performed. The real emargination length of feather tips, their flexibility and curved shapes during cruise are considered in the present study. The experiments were performed at a Reynolds number of 3.7 x 105 on a symmetric flat plate half wing of aspect ratio 3. Lift, drag and pitching moments were measured using a six component aerodynamic balance. Four different shapes inspired by bird primary feathers have been analysed. The rigid curved tip performed the best increasing the L/D ratio by 20%. This …


Manufacturing Process Simulation – On Its Way To Industrial Application, Dennis Otten, Tobias A. Weber, Jan-Christoph Arent Mar 2018

Manufacturing Process Simulation – On Its Way To Industrial Application, Dennis Otten, Tobias A. Weber, Jan-Christoph Arent

International Journal of Aviation, Aeronautics, and Aerospace

Manufacturing process simulation (MPS) has become more and more important for aviation and the automobile industry. A highly competitive market requires the use of high performance metals and composite materials in combination with reduced manufacturing cost and time as well as a minimization of the time to market for a new product. However, the use of such materials is expensive and requires sophisticated manufacturing processes. An experience based process and tooling design followed by a lengthy trial-and-error optimization is just not contemporary anymore. Instead, a tooling design process aided by simulation is used more often. This paper provides an overview …


Damage Characterization Of Aircraft Fuselage Using Vibrothermography Technique-Review And Analysis, Abbasali Saboktakin Jan 2018

Damage Characterization Of Aircraft Fuselage Using Vibrothermography Technique-Review And Analysis, Abbasali Saboktakin

International Journal of Aviation, Aeronautics, and Aerospace

Vibrothermogrphy is a promising non-destructive technique that uses ultrasonic elastic waves to detect damages and is typically applied in the aerospace and automotive industries. This technique allows for defect selective imaging using thermal waves that are generated by ultrasound waves. In this paper, vibrothermography technique was applied to the aircraft fuselage to detect its damage. The influence of the damage on the temperature distribution at the damage region on the aluminum was investigated by finite element technique. Comprehensive understanding in edge crack in fuselage heating caused by local friction between crack surfaces was obtained.


Advances In Composite Manufacturing Of Helicopter Parts, Tobias A. Weber, Hans-Joachim K. Ruff-Stahl Jan 2017

Advances In Composite Manufacturing Of Helicopter Parts, Tobias A. Weber, Hans-Joachim K. Ruff-Stahl

International Journal of Aviation, Aeronautics, and Aerospace

This study investigates and compares different methods for improving standard autoclave composite manufacturing in order to find suitable approaches to a more efficient composite production. The goal is not only a reduction in manufacturing times and costs but also quality enhancement. Improved part quality while decreasing costs enables a manufacturer of composite parts to expand its market share, especially in the helicopter market, which has been constantly shrinking over the last two years. Various approaches such as improved tooling technology, the use of automated systems for lamination as well as outsourcing are examined to provide an overview of possible advancements …


Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D. Jan 2016

Determination Of Rejected Landing Roll Runway Point-Of-No-Return And Go-Around In Transport Category Airplanes, Nihad E. Daidzic, Ph.D., Sc.D.

International Journal of Aviation, Aeronautics, and Aerospace

The decelerate-accelerate-takeoff maneuver in transport category airplanes has been discussed. Mathematical model based on total energy conservation has been used to calculate the rejected landing point-of-no-return on a runway which will still enable the airplane to safely execute go-around and achieve regulatory screen heights and takeoff safety speeds. After this point has been exceeded or below the point-of-no-return speed no go-around should ever be considered. Landing long and fast and/or decelerating on slippery runways may very well result in an overrun which could be prevented if the go-around is attempted before reaching this critical runway point. The point-of-no-return on the …