Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Engineering

Modelling Air Quality In An Aircraft Passenger Cabin Using Health Care Standards, Bert Silich Jan 2022

Modelling Air Quality In An Aircraft Passenger Cabin Using Health Care Standards, Bert Silich

International Journal of Aviation, Aeronautics, and Aerospace

The interest in aerosol contamination of aircraft passenger cabins has increased since the onset of the COVID-19 pandemic. Mathematical models have been developed to help describe how an aerosol behaves in a closed space. The number of infectious particles inhaled is of scientific interest because it can be related to the risk of getting ill from a pathogen. The data required to calculate these results is often difficult to obtain in real world settings. In fact, particle inhalation details are not obtained in the day-to-day routine of a health care environment and are they not required to maintain safety. Hospital …


Comparative Study On The Prediction Of Aerodynamic Characteristics Of Mini - Unmanned Aerial Vehicle With Turbulence Models, Somashekar V, Immanuel Selwyn Raj A Jan 2021

Comparative Study On The Prediction Of Aerodynamic Characteristics Of Mini - Unmanned Aerial Vehicle With Turbulence Models, Somashekar V, Immanuel Selwyn Raj A

International Journal of Aviation, Aeronautics, and Aerospace

When dealing with CFD simulations the turbulent nature is seen on most of the engineering flows and these flows need to be solved. Reliable and applicable CFD outputs can be obtained from the accurate modelling of the turbulence as it is one of the most vital elements of CFD modelling. The RANS equations are extensively employed to analyse the complex flows over aircraft and for this purpose, a turbulence model is needed for turbulent flow analyses. Compatible turbulence must be chosen for the exact predictions of aircraft aerodynamic characteristics. In this report, numerical analyses of Mini-UAV are done to compare …


Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott Jan 2021

Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott

International Journal of Aviation, Aeronautics, and Aerospace

Unmanned Aerial Systems (UAS) continue to grow in both popularity and utility within the national airspace system. The use of commercial UAS for civil inspection, specifically that of bridge structures, is becoming commonplace among practitioners and academics alike. The development of an integrated bridge-inspection hazard model provides a way for UAS operators to prepare for and respond to changing environmental conditions that could otherwise prevent a successful UAS flight. The interaction of wind-induced airflow with bridge surfaces creates an aerodynamic wake that can result in hazardous conditions for a UAS platform operating in close proximity. An analysis of this airflow …


Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison Jan 2021

Numerical Analysis Of Aerospike Engine Nozzle Performance At Various Truncation Lengths, Sam Dakka Dr, Oliver Dennison

International Journal of Aviation, Aeronautics, and Aerospace

The aerospike engine was first devised in the early 1960s where it provided new means of reaching orbit in a single stage. The paper aimes to demonstrate the viability of the technology by showcasing the increased nozzle thrust efficiency over the conventional bell nozzle. Various truncations were applied to the nozzle and each was subjected to two conditions, an over-expansion and near optimum condition. The nozzle contour was developed using the simple approximation method and was chosen to replicate that of the XRS-2200. This anchored the data, thereby validating the computational fluid dynamics (CFD) simulation. Simulations were completed for at …


Comparative Study On Performance Accuracy Of Three Probe And Five Probe Flow Analysers For Wind Tunnel Testing, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr Jan 2021

Comparative Study On Performance Accuracy Of Three Probe And Five Probe Flow Analysers For Wind Tunnel Testing, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr

International Journal of Aviation, Aeronautics, and Aerospace

In the field of inviscid fluid flow studies, the theoretical concept has to be developed even more. In order to make it possible, it is very important to supplement the concepts with strong experimental results. While performing experimentation, various accepts of design can be determined with factors influencing the and also required modification can be recommended in a more systematic and economic manner. Also, the aim objective of the experiment is to extend the underlying theory and to produce new designs with improvements that can be great support to the advancement in technology. In experimental analysis, wind tunnels are used …


Aerodynamic Characterization Of Bio-Mimicked Pleated Dragonfly Aerofoil, Md Akhtar Khan, Chinmaya Padhy Jan 2021

Aerodynamic Characterization Of Bio-Mimicked Pleated Dragonfly Aerofoil, Md Akhtar Khan, Chinmaya Padhy

International Journal of Aviation, Aeronautics, and Aerospace

The work inspired by the dragonfly wing corrugation positioned at the front wing's radius section lying at 40% of the total wingspan of forewing from the root section. During gliding flight, dragonfly wings presumed to be an ultra-light aerofoil due to its well-defined cross-sectional corrugation. The aerodynamic simulation carried out to understand the aerodynamic performance of a bio-mimetic dragonfly corrugated airfoil at low Reynolds number range of 75000-150000 to explore the potential advantages of pleated airfoils at a varying angle of attack from 0° to 12°. CFD analysis accomplished by using ANSYS Fluent to understand the aerodynamic performance of the …


A Model For Inhalation Of Infectious Aerosol Contaminants In An Aircraft Passenger Cabin, Bert A. Silich Jan 2021

A Model For Inhalation Of Infectious Aerosol Contaminants In An Aircraft Passenger Cabin, Bert A. Silich

International Journal of Aviation, Aeronautics, and Aerospace

Aerosol contamination of an aircraft cabin by infectious passengers is a concern of passengers, aircrew and the aviation industry. This may be especially important during a pandemic, such as COVID-19, where the full extent of aerosol transmission is not well understood. A statistical method to determine the number of infectious passengers on board along with a mathematical model estimating the contaminant concentration of aerosols in the cabin and the number of inhaled infectious particles by passengers is presented. An example is used to demonstrated how the results can be estimated during normal operations and emergency conditions with malfunctions of the …


Aerodynamic Performance Analysis Of Co-Flow Jet Airfoil, C M Vigneswaran, Vishnu Kumar G C Jan 2021

Aerodynamic Performance Analysis Of Co-Flow Jet Airfoil, C M Vigneswaran, Vishnu Kumar G C

International Journal of Aviation, Aeronautics, and Aerospace

The work in this paper aims to increase the maximum lift coefficient of the airfoil by implementing the co-flow jet concept on NACA 0018 airfoil and also to investigate the performance of co-flow jet (CFJ) airfoil. To conduct numerical solution, RANS equations have been solved for 2D incompressible and unsteady flow using the Spalart-Allmaras turbulence model. The suction surface of the airfoil is modified by placing the injection slot near the leading edge and the suction slot near the trailing edge. A small mass of air is withdrawn into the airfoil suction slot, pressurized by a pumping system located inside …


Albatross And Falcon Inspired Bionic Uav: An Aerodynamic Analysis, Bilji C. Mathew, Sagar K. Sahu, Prantik Dutta, Rushi Savale, Muruga Lal Jeyan Jv Dr. Jan 2021

Albatross And Falcon Inspired Bionic Uav: An Aerodynamic Analysis, Bilji C. Mathew, Sagar K. Sahu, Prantik Dutta, Rushi Savale, Muruga Lal Jeyan Jv Dr.

International Journal of Aviation, Aeronautics, and Aerospace

The drone industry yearns for enhanced aerodynamic performance. In order to achieve this feat, researchers and engineers are trying to mimic the natural flyers due to their aerodynamic optimality. One such flyer, the Albatross is an inspiration for many marine drones due to its planform and aerodynamic efficiency. The wing of the plan form is designed and simulated to study its properties. The Bell-Shaped Lift Distribution is incorporated for higher efficiency and elimination of the total downwash produced in case of an Elliptical Lift Distribution. A blended wing body inspired by the Falcon is used for smoother airflow interactions. Furthermore, …


Experimental And Computational Evaluation Of Five Hole Five Probe Flow Analyzer For Subsonic Wind Calibration, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr Jan 2020

Experimental And Computational Evaluation Of Five Hole Five Probe Flow Analyzer For Subsonic Wind Calibration, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr

International Journal of Aviation, Aeronautics, and Aerospace

It is very essential to predict the flow and its related parameters to understand real life fluid flow. The real-life fluid problems are studied with wind tunnels which gives very efficient results in practice. But in the case of wind tunnel studies flow angularities plays crucial role. Flow angularity determination includes measurement of static pressure, dynamic pressure and inflow angles. Flow prediction even hold a very strong hand in design process. Designing and testing being the foundation of any process industry, flow measurements and its related parameters have to be well evaluated. In such cases, wind tunnels play important role …


Identify Aerodynamic Derivatives Of The Airplane Attitude Channel Using A Spiking Neural Network, Nguyen Quang Vinh, Nguyen Duc Thanh, Hoang Minh Dac, Truong Dang Khoa Jan 2020

Identify Aerodynamic Derivatives Of The Airplane Attitude Channel Using A Spiking Neural Network, Nguyen Quang Vinh, Nguyen Duc Thanh, Hoang Minh Dac, Truong Dang Khoa

International Journal of Aviation, Aeronautics, and Aerospace

The paper proposes a method for identifying aerodynamic coefficient derivatives of aircraft attitude channel using spiking neural network (SNN) and Gauss-Newton algorithm based on data obtained from actual flights. Using SNN combination with Gauss-Newton iterative calculation algorithm allows the identification of aerodynamic coefficient derivatives in a nonlinear model for aerodynamic parameters with higher accuracy and faster calculation time. The paper proposes an algorithm to train the SNN multi-layer network by Normalized Spiking Error Back Propagation (NSEBP), in which, in the forward propagation period, the time of output spikes is calculating by solving quadratic equations instead of detection by traditional methods. …


Active Fault-Tolerance Of The Unmanned Aerial Vehicle Automatic Control Systems, Vuong Anh Trung, Nguyen Van Thinh, Nguyen Duc Thanh, Nguyen Quang Vinh, Tran Thuan Hoang Jan 2020

Active Fault-Tolerance Of The Unmanned Aerial Vehicle Automatic Control Systems, Vuong Anh Trung, Nguyen Van Thinh, Nguyen Duc Thanh, Nguyen Quang Vinh, Tran Thuan Hoang

International Journal of Aviation, Aeronautics, and Aerospace

This paper presents an introductory overview of principles of the three-layer hierarchy of active fault-tolerance, providing, determination of the fault type with as many details as enough to get recoverable fault reason and failure toleration by flexible redundancy using; the conception of active fault-tolerant control in abnormal modes is described. Developed models and methods of a systematic approach to fault tolerance in the direction of the effective use of the signal, parametric and structural redundancies and selection of parrying tools. Performed experimental researches of the unmanned aerial vehicle (UAV) automatic control systems (ACS).


Performance Characteristics Design Of Pulsed Plasma Thrusters For Drag Counter-Reacting, Dr. Sam Dakka Jan 2020

Performance Characteristics Design Of Pulsed Plasma Thrusters For Drag Counter-Reacting, Dr. Sam Dakka

International Journal of Aviation, Aeronautics, and Aerospace

Determining the performance characteristics of off the shelf pulsed plasma thrusters to enhance the life time of low earth orbiting platforms was investigated theoretically. Pulsed plasma thruster analysis was accomplished through development of correlations from historical data that distinguished between breech fed propellant to side fed propellant designs. Based on semi-empirical equations the power required by the thruster to counter react the drag was estimated and mapped for 1U to 27U CubeSat configurations for altitude ranging between 200km to 600km. It appears that the power required is dependent on the feeding delivery system design. For side fed designs the power …


The Detrimental Effect Of Rainfall On Performance And Stability Characteristics Of Aircrafts-A Comprehensive Review, Praneeth Hr Mr, Amit Kumar Thakur Dr Jan 2020

The Detrimental Effect Of Rainfall On Performance And Stability Characteristics Of Aircrafts-A Comprehensive Review, Praneeth Hr Mr, Amit Kumar Thakur Dr

International Journal of Aviation, Aeronautics, and Aerospace

The rapidly growing global market demands faster transit of human beings and goods even in unfavorable weather conditions of rainfall. The paper gives an overview of rain research methodologies, mathematical models to track raindrops in the flow field. The paper depicts the havoc rainfall causes on performance characteristics for various phases of flight in terms of evaluation of CL and CD and dynamic performance parameters such as short period mode. The knowledge obtained by this review paper could help designers to modify the design of aircraft such that it has better performance, stability, and control characteristics for all …


Comparison Of Flow Field In The Proximity Of A Single Planar & Wrap-Around Fin, Nayhel Sharma, Palak Saini, Hrishabh Chaudhary, Gurteg Nagi, Rakesh Kumar Dr. Jan 2019

Comparison Of Flow Field In The Proximity Of A Single Planar & Wrap-Around Fin, Nayhel Sharma, Palak Saini, Hrishabh Chaudhary, Gurteg Nagi, Rakesh Kumar Dr.

International Journal of Aviation, Aeronautics, and Aerospace

Abstract

This paper analyses the results of the computational analysis between a single planar and a wrap-around fin mounted on a semi-cylindrical body. A free-stream Computational Fluid Dynamics (CFD) model was simulated for both cases in the Mach 0.4-3.0M range at 0°Angle of attack, in which, the behavior of flow around the fin was investigated using a turbulence model of higher order discretization. The post-processing shows all the possible views of the flow dynamics around the fins, as well as the missile body. The aerodynamic drag and the rolling moment characteristics of the planar and the wrap-around fin have been …


Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul Jan 2019

Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul

International Journal of Aviation, Aeronautics, and Aerospace

Abstract:

During the last years, several thrust control systems of aerospace rocket engines have been developed. The fluidic thrust vectoring is one of them; it is simple in design and offers a substantial gain in weight and in performance. Most of studies related to this device were carried out with cold gas. It’s quite legitimate to expect that the thermophysical properties of the gases may affect considerably the flow behavior. Besides, the effects of reacting gases at high temperatures, under their effects all flow parameters like to vary.

This study aims to develop a new methodology that allows studying and …


Aerodynamic Design And Exploration Of A Blended Wing Body Aircraft At Subsonic Speed, Sam Dakka Dr, Oliver Johnson Jan 2019

Aerodynamic Design And Exploration Of A Blended Wing Body Aircraft At Subsonic Speed, Sam Dakka Dr, Oliver Johnson

International Journal of Aviation, Aeronautics, and Aerospace

Blended Wing Body (BWB) is a novel aircraft concept which provides many different aerodynamic benefits over conventional aircrafts design. This research investigated the BWB design, L/D characteristics, surface pressure distribution and span-wise lift distribution of a BWB aircraft at low to medium subsonic speeds. A BWB model was designed, manufactured and tested in a subsonic wind tunnel to validate the CFD simulation. The results gained from the investigation proved that BWB has a L/D improvement of 9.4% than conventional aircrafts and 21% increase at medium subsonic speeds (Mach 0.6) compared to lower subsonic speeds of 25 m/sec. It was found …


Computational Study Of Flow Interactions Over A Close Coupled Canard-Wing On Fighter, Setyawan Bekti Wibowo, Sutrisno Sutrisno, Tri Agung Rohmat Jan 2019

Computational Study Of Flow Interactions Over A Close Coupled Canard-Wing On Fighter, Setyawan Bekti Wibowo, Sutrisno Sutrisno, Tri Agung Rohmat

International Journal of Aviation, Aeronautics, and Aerospace

There have been many attempts to improve the flying performance of a fighter. By modifying the flow that occurs along the fuselage is expected to improve the performance of the aircraft. One of the indicators of combat aircraft performance is the ability to perform maneuver movement. Adding a canard as forewing on the fighter wing configuration is considered capable of raising the ability in maneuver movement. The use of canard-delta pairs will affect the performance and aerodynamic characteristics of the plane. Wings and canards with delta configuration will make the rolled-up vortex as a lifting force producer on the aircraft. …


Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins Jan 2019

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins

International Journal of Aviation, Aeronautics, and Aerospace

The Federal Aviation Administration (FAA) has put forth a set of regulations (Part 107) that govern small unmanned aerial system (sUAS) operations. These regulations restrict unmanned aircraft (UA) from flying over people and their operation to within visual line of sight (VLOS). However, as new applications for unmanned aerial systems (UAS) are discovered, their capabilities improve, and regulations evolve, there is an increasing desire to undertake urban operations, such as urban air mobility, package delivery, infrastructure inspection, and surveillance. This built environment poses new weather hazards that include enhanced wind shear and turbulence. The smaller physical dimensions, lower mass and …


A New Method For The Prediction Of The Downwash Angle Gradient, Mondher Yahyaoui Dr. Jan 2019

A New Method For The Prediction Of The Downwash Angle Gradient, Mondher Yahyaoui Dr.

International Journal of Aviation, Aeronautics, and Aerospace

A new method for the prediction of the downwash angle gradient due to aircraft wings across the span of an aft horizontal tail in the incompressible regime is presented. The approach is quite general and accounts for all practical wing geometric parameters except for wing twist where it is shown that this parameter has very little effect on the downwash angle gradient. The method consists of an empirical law which requires the prior knowledge of three constants. These have been computed either based on experimental data when available or using numerical data obtained using the vortex-lattice method. These constants are …


Design And Realization Of An Unmanned Aerial Rotorcraft Vehicle Using Pressurized Inflatable Structure, Nirmal Sadasivan Jan 2019

Design And Realization Of An Unmanned Aerial Rotorcraft Vehicle Using Pressurized Inflatable Structure, Nirmal Sadasivan

International Journal of Aviation, Aeronautics, and Aerospace

Unmanned aerial rotorcraft vehicles have many military, commercial and civil applications. There is a necessity to advance the performance on several ranges of rotorcraft for using these vehicles successfully in the expanded future roles. A lower flight time, noise disturbance and safety issues remain the key obstacles in increasing the efficiency of the rotorcraft for various applications. This work presents the design and realization of a rotorcraft using pressurized inflatable structure filled with lighter than air gas such as helium or hydrogen to provide lift assistance for the vehicle. Two iterative design procedures were developed for designing the vehicle. One …


A Comparative Aerodynamic Study Of Nonplanar Wings, Mondher Yahyaoui Jan 2019

A Comparative Aerodynamic Study Of Nonplanar Wings, Mondher Yahyaoui

International Journal of Aviation, Aeronautics, and Aerospace

In this work four nonplanar wing configurations were studied using the vortex-lattice method: the wing-winglet, the C-wing, the biplane, and the box wing. It has been shown that linear twist, which is more practical in aeronautical construction, is more than adequate to achieve the higher values of span efficiency factor obtained by a completely optimized twist distribution along the span camber, the latter being in general highly varying and thus not very practical. It has also been shown that moderate sweep can slightly increase the span efficiency factor and further reduce vortex drag. The increase is more important for the …


A Thrust Equation Treats Propellers And Rotors As Aerodynamic Cycles And Calculates Their Thrust Without Resorting To The Blade Element Method, Phillip -. Burgers Jan 2019

A Thrust Equation Treats Propellers And Rotors As Aerodynamic Cycles And Calculates Their Thrust Without Resorting To The Blade Element Method, Phillip -. Burgers

International Journal of Aviation, Aeronautics, and Aerospace

The lift generated by a translating wing of known translational speed, lift coefficient and area is calculated by a simple equation. A propeller or rotor generating thrust share the same aerodynamic principles but their different kinematics cause the calculation of their thrust to be laborious. This paper derives a thrust equation from an algebraic expansion of the Prandtl’s dynamic pressure term qby adding the rotational kinetic energy of a propeller or rotor to the existing translational kinetic energy term. This thrust equation can be applied directly to propellers and rotors and assumes these to operate as cycles with …


Experimental Investigation Of A New Spiral Wingtip, Naseeb Ahmed Siddiqui, Mohamed Aldeeb, Waqar Asrar, Erwin Sulaeman Mar 2018

Experimental Investigation Of A New Spiral Wingtip, Naseeb Ahmed Siddiqui, Mohamed Aldeeb, Waqar Asrar, Erwin Sulaeman

International Journal of Aviation, Aeronautics, and Aerospace

Experiments on the relative merits and demerits of slotted wingtips mimicking a bird’s primary feathers have been performed. The real emargination length of feather tips, their flexibility and curved shapes during cruise are considered in the present study. The experiments were performed at a Reynolds number of 3.7 x 105 on a symmetric flat plate half wing of aspect ratio 3. Lift, drag and pitching moments were measured using a six component aerodynamic balance. Four different shapes inspired by bird primary feathers have been analysed. The rigid curved tip performed the best increasing the L/D ratio by 20%. This …


Low Reynolds Number Numerical Simulation Of The Aerodynamic Coefficients Of A 3d Wing, Khurshid Malik, Waqar Asrar, Erwin Sulaeman Feb 2018

Low Reynolds Number Numerical Simulation Of The Aerodynamic Coefficients Of A 3d Wing, Khurshid Malik, Waqar Asrar, Erwin Sulaeman

International Journal of Aviation, Aeronautics, and Aerospace

A low Reynolds number, three-dimensional CFD analysis is carried out for a finite flat plate wing using the commercial CFD code STAR CCM+. The six-aerodynamic force and moment components CL, CD, CM, CN, Cl, CY and their derivatives are computed at a Reynolds numbers of 3x105 by varying the pitch, roll and yaw angles about the quarter chord point. The computed results have been validated with experimental aerodynamic balance data when possible. The results indicate that roll and yaw angle affect the aerodynamic coefficients of the flat plate …


Base Pressure Control Using Micro-Jets In Supersonic Flow Regimes, Vigneshvaran Sethuraman, Sher Afghan Khan Feb 2018

Base Pressure Control Using Micro-Jets In Supersonic Flow Regimes, Vigneshvaran Sethuraman, Sher Afghan Khan

International Journal of Aviation, Aeronautics, and Aerospace

Base pressure plays a vital role in aerospace-related applications and its control is essential in reduction of drag and improving fuel consumption. Low pressure at the base of Rockets, Missiles, bombs and shells are a very common problem happening at transonic and supersonic speeds. In most of the cases there is a significant dip in pressure at the base region which will have implications on the design of aerospace vehicles. This paper presents an experimental investigation carried out for flow control at supersonic regimes. Experiments were conducted to measure the base pressure in the base region and wall pressure distribution …


Blended Wing Body Propulsion System Design, Parth Kumar, Adeel Khalid Oct 2017

Blended Wing Body Propulsion System Design, Parth Kumar, Adeel Khalid

International Journal of Aviation, Aeronautics, and Aerospace

This research paper focuses on the optimization of the propulsion system of a blended wing body design. Two different aspects of the design, the engine placement and count, and the engine itself, are investigated. The preliminary wing of the BWB is created through aerodynamic analysis, and is kept as a constant over the different propulsion system configurations. The engine parameters are first investigated. Equations are derived to express takeoff distance and climb rate as a function of engine sea level thrust, cruise thrust, and the number of engines. Nearly 150 different engine models, in BWB configurations of 2, 3, 4, …


Wingtip Vortex Alleviation Using A Reverse Delta Type Add-On Device, Afaq Altaf Sep 2017

Wingtip Vortex Alleviation Using A Reverse Delta Type Add-On Device, Afaq Altaf

International Journal of Aviation, Aeronautics, and Aerospace

The result of interactions of a wingtip vortex of a half-span wing and vortices generated by a slender reverse delta type add-on device were studied using Particle Image Velocimetry in a closed-loop low-speed wind tunnel. Characteristics of the vortex interactions produced downstream in planes perpendicular to the free stream direction at a mean chord-based Reynolds number, Rec = 2.75×105, are explored in this work. The study reveals that the reverse delta type add-on device considerably reduces the tangential velocity, vorticity and circulation magnitude of the resultant vortex by up to 79.6%, 85.6% and 48.7%, respectively. It was …


Literature Review: Biomimetic And Conventional Aircraft Wing Tips, Naseeb Ahmed Siddiqui, Waqar Asrar, Erwin Sulaeman May 2017

Literature Review: Biomimetic And Conventional Aircraft Wing Tips, Naseeb Ahmed Siddiqui, Waqar Asrar, Erwin Sulaeman

International Journal of Aviation, Aeronautics, and Aerospace

This paper is an attempt to summarize the effect of wing tip devices employed by birds, as well as aeronautical engineers in the past to improve the performance characteristics of aircraft. The focus is on reduction of the induced drag or drag due to lift also known as inviscid drag. This paper will provide an insight on both biomimetic and conventional wing tip approaches to reduce the induced drag. Prior analysis and experiments on the aerodynamics of airplane performance due to both these separate studies have been discussed. The needs of the industry and their past inventions have been described …


Impact Of A Reverse Delta Type Add-On Device On The Flap-Tip Vortex Of A Wing, Afaq Altaf, Tan Boon Thong, Ashraf Ali Omar, Waqar Asrar Jul 2016

Impact Of A Reverse Delta Type Add-On Device On The Flap-Tip Vortex Of A Wing, Afaq Altaf, Tan Boon Thong, Ashraf Ali Omar, Waqar Asrar

International Journal of Aviation, Aeronautics, and Aerospace

The effect of interactions of vortices produced by an outboard flap-tip of a half-span wing (NACA 23012 in landing configuration) and a slender reverse delta type add-on device, placed in the proximity of the outboard flap-tip, on the upper surface of the half-span wing is investigated using Particle Image Velocimetry in a closed loop low speed wind tunnel. Specifically the characteristics of the vortex interactions generated downstream in planes perpendicular to the free stream direction and their dependence on angles of attack at a chord-based Reynolds number of Rec=2.75×105 have been determined. It was found that the …