Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Buckling-Driven Force Generation Of Cell Cortex, Pranith Lomada, Wonyeong Jung, Taeyoon Kim Aug 2015

Buckling-Driven Force Generation Of Cell Cortex, Pranith Lomada, Wonyeong Jung, Taeyoon Kim

The Summer Undergraduate Research Fellowship (SURF) Symposium

Actomyosin cortex, a thin network underlying cell membrane, is known to generate a large portion of tensile forces required for various cellular processes. Recently, theoretical studies predicted that buckling of actin filaments breaks symmetry between tensile and compressive forces developed by myosin motors, resulting in tensile stress at a network level. However, the significance of the filament buckling of the cortex has yet to be demonstrated either computationally or experimentally. Here, buckling-dependent stress generation of the cortex-like actomyosin network was investigated using an agent-based computational model consisting of actin filaments, actin cross-linking proteins (ACPs), and molecular motors. First, a wide …


Selective Protein Labelling To Visualize Cellular Differentiation, Andrew J. Witten, Tamara L. Kinzer-Ursem Aug 2015

Selective Protein Labelling To Visualize Cellular Differentiation, Andrew J. Witten, Tamara L. Kinzer-Ursem

The Summer Undergraduate Research Fellowship (SURF) Symposium

Protein post-translational modifications serve to give proteins new cellular function, spatial localization, or enzymatic activity. Myristoylation is a common post-translational modification where the enzyme N-myristoyltransferase adds myristic acid onto the N-terminus of a variety of proteins. In this work we use a myristic acid analog, 12-azidododecanoic acid (12ADA) to facilitate the implementation of azide-alkyne cycloaddition reactions on myristoylated proteins. Selective protein labeling methods such as these are useful in research because they can be used to help determine the biological function of this protein lipid modification and can be extended to study disregulated protein myristoylation in disease states. To validate …


Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng Aug 2015

Harnessing Notch Signaling For Biomaterial Scaffold-Based Bone Regeneration, Helena P. Lysandrou, Chunhui Jiang, Naagarajan Narayanan, Shihuan Kuang, Meng Deng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bone fracture has recently become prevalent, especially with an increasingly aging population. Current bone grafts procedures, including autografts and allografts, are hindered by multiple factors, such as limited supplies and inconsistent bone healing. Scaffold-based bone tissue engineering emerges as a prospective strategy to aid in bone regeneration through delivery of growth factors such as bone morphogenic proteins (BMPs). However, the use of BMPs suffers from several drawbacks such as protein instability and immunogenicity. Therefore, there exists a great need for the development of novel therapies to promote bone healing. Notch signaling, a pathway critical for cell-fate determination has been shown …


Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve Aug 2015

Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The field of regenerative medicine seeks to create replacement tissues and organs, both to repair deficiencies in biological function and to treat structural damage caused by injury. Scaffoldings mimicking extracellular matrix (ECM), the structure to which cells attach to form tissues, have been developed from synthetic polymers and also been prepared by decellularizing adult tissue. However, the structure of ECM undergoes significant remodeling during natural tissue repair, suggesting that ECM-replacement constructs that mirror developing tissues may promote better regeneration than those modeled on adult tissues. This work investigated the effectiveness of a method of viewing the extracellular matrix of developing …


Bioengineered Cell Niche For Skeletal Muscle Regeneration, Nicole M. Whittern, Naagarajan Narayanan, Chunhui Jiang, Owen Jones, Jay Gilbert, Michael Whittern, Shihuan Kuang, Meng Deng Aug 2015

Bioengineered Cell Niche For Skeletal Muscle Regeneration, Nicole M. Whittern, Naagarajan Narayanan, Chunhui Jiang, Owen Jones, Jay Gilbert, Michael Whittern, Shihuan Kuang, Meng Deng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Skeletal muscles can self-repair minor strains, lacerations, and contusions; however, in cases of volumetric muscle lossand muscle degenerative diseases, tissue fails to regenerate. Current cell-based therapies, such as myoblast transplantation, have significant drawbacks of low survival rates and engraftment efficacy, mainly due to the absence of supportive cell microenvironment. Scaffolds that mimic the natural cell microenvironment provide a robust platform to support cell adhesion, migration, proliferation, and differentiation. Electrospinning is a versatile technology platform used for fabricating the fiber scaffold that mimics the extracellular matrix. Thus, we aim to reconstitute the cell microenvironment through development of aligned fiber scaffolds by …


Proteoglycan Mimic Of The Glycocalyx To Treat Endothelial Dysfunction, Victoria Messerschmidt, Alyssa Panitch, James R. Wodicka Aug 2015

Proteoglycan Mimic Of The Glycocalyx To Treat Endothelial Dysfunction, Victoria Messerschmidt, Alyssa Panitch, James R. Wodicka

The Summer Undergraduate Research Fellowship (SURF) Symposium

Patients with kidney failure usually undergo hemodialysis, a process by which toxins produced by the body are filtered from the blood, in order to survive. The preferred form for vascular access is called an arteriovenousfistula (AVF), a surgically created connection between an artery and vein that is utilized to undergo dialysis. However, AVFs have a failure rate of 50-60%. One of the contributions to AVF failure is endothelial cell dysfunction and loss of glycocalyx, which allows neutrophils and other native cells into the media of the vessel, which causes an inflammatory response. Our lab addresses endothelial dysfunction by mimicking the …