Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Simulation Of Plasmonic Waveguides Based On Long-Range Surface Plasmon Polaritons, Yugang Jing, Alexandra Boltasseva, Nathaniel Kinsey Aug 2014

Simulation Of Plasmonic Waveguides Based On Long-Range Surface Plasmon Polaritons, Yugang Jing, Alexandra Boltasseva, Nathaniel Kinsey

The Summer Undergraduate Research Fellowship (SURF) Symposium

The demand for faster and smaller computing devices is growing larger and larger. In the recent decade, research has proven that plasmonic devices have exciting characteristics and performance for next generation on‑chip structures. However, most of these devices contain noble metals and are not CMOS compatible. This work numerically investigates the performance of plasmonic waveguide designs made of TiN, a CMOS compatible material with optical properties similar to gold. Through our work, we demonstrate that TiN nanophotonic devices can be useful for inter-chip connections. A series of simulations using COMSOL Multiphysics were performed to test the performance of these structures. …


Modeling Thermophotovoltaic Rare Earth Based Selective Emitters, Anubha Mathur, Enas Said Sakr, Peter Bermel Aug 2014

Modeling Thermophotovoltaic Rare Earth Based Selective Emitters, Anubha Mathur, Enas Said Sakr, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermophotovoltaic (TPV) devices convert heat to electricity using thermal radiation to illuminate a photovoltaic (PV) diode. Typically, this radiation is generated by a blackbody-like emitter. Such an emission spectrum includes a broad range of wavelengths, but only higher energy photons can be converted by the PV diode, which severely limits efficiencies. Thus, introducing a selective emitter and filter to recycle unwanted photons could potentially greatly enhance performance. In this work, we consider a rare earth-doped selective emitter structure to increase the number of photons emitted above the bandgap of the photovoltaic (PV) cell, while minimizing the total power emitted below …


Simulating Nanoscale Optics In Photovoltaics With The S-Matrix Method, Dalton Chaffee, Xufeng Wang, Peter Bermel Aug 2014

Simulating Nanoscale Optics In Photovoltaics With The S-Matrix Method, Dalton Chaffee, Xufeng Wang, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the push to build high-efficiency solar cells with less materials usage, thin-film solar cells have attracted an increasing amount of interest. Thin films are particularly attractive if they could exhibit light trapping and photon recycling capabilities exceeding those of traditional wafer-based cells. Recent work by Alta Devices demonstrating a record single-junction efficiency of 28.8% with a gallium arsenide thin film cell shows the potential. However, most existing simulation tools do not handle these properties well -- particularly photon recycling. In this work, we develop an improved solar cell simulation tool to accurately predict thin-film performance. It is based on …


Improved Microrobotic Control Through Image Processing And Automated Hardware Interfacing, Archit R. Aggarwal, Wuming Jing, David J. Cappelleri Aug 2014

Improved Microrobotic Control Through Image Processing And Automated Hardware Interfacing, Archit R. Aggarwal, Wuming Jing, David J. Cappelleri

The Summer Undergraduate Research Fellowship (SURF) Symposium

Untethered submilliliter-sized robots (microrobots) are showing potential use in different industrial, manufacturing and medical applications. A particular type of these microrobots, magnetic robots, have shown improved performance in power and control capabilities compared to the other thermal and electrostatic based robots. However, the magnetic robot designs have not been assessed in a robust manner to understand the degree of control in different environments and their application feasibility. This research project seeks to develop a custom control software interface to provide a holistic tool for researchers to evaluate the microrobotic performance through advance control features. The software deliverable involved two main …