Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

Electromagnetics and Photonics

Institution
Keyword
Publication Year
Publication

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani Nov 2023

Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani

Symposium of Student Scholars

This research aims to transform cancer treatment through the optimization of brachytherapy, with a focus on reducing treatment duration, setup complexities, and financial burdens, all while emphasizing patient safety. Patients living at a distance from radiation clinics, particularly those undergoing extended Low Dose Radiation brachytherapy, often struggle with the formidable financial challenges associated with securing nearby accommodations. In response to these issues, the research introduces a radiation capsule designed to condense the conventional six-month treatment period to approximately just one week, thereby significantly reducing the duration of required accommodations. This capsule is especially relevant considering the construction cost of $40 …


Development Of A Set Of Pre-Class Videos For Electromagnetic Theory, Benjamin Mcpheron, Josiah D. Kunz Mar 2019

Development Of A Set Of Pre-Class Videos For Electromagnetic Theory, Benjamin Mcpheron, Josiah D. Kunz

ASEE IL-IN Section Conference

One important aspect of experiential learning is allowing students time to reflect on new concepts before the application of the material. Most commonly, this is attempted by assigning readings from a textbook, but research suggests that few students complete these readings. This discouraging fact has prompted the use of other resources, such as videos, to supplement pre-class readings in order to introduce new material. Previous work has been completed by this author to produce pre-class videos for use in an introductory circuits course. This paper extends that work to the development of pre-class videos for a senior level electrical engineering …


Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado Nov 2018

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado

Shared Knowledge Conference

Photonic crystals allow light to be controlled and manipulated such that novel photonic devices can be created. We are interested in using photonic crystals to increase the energy efficiency of our semiconductor whistle-geometry ring lasers. A photonic crystal will enable us to reduce the ring size, while maintaining confinement, thereby reducing its operating power. Photonic crystals can also exhibit slow light that will increase the interaction with the material. This will increase the gain, and therefore, lower the threshold for lasing to occur. Designing a photonic crystal for a particular application can be a challenge due to its number of …


Study Of Physical Layer Security And Teaching Methods In Wireless Communications, Zhijian Xie, Christopher Horne Oct 2018

Study Of Physical Layer Security And Teaching Methods In Wireless Communications, Zhijian Xie, Christopher Horne

KSU Proceedings on Cybersecurity Education, Research and Practice

In most wireless channels, the signals propagate in all directions. For the communication between Alice and Bob, an Eavesdropper can receive the signals from both Alice and Bob as far as the Eavesdropper is in the range determined by the transmitting power. Through phased array antenna with beam tracking circuits or cooperative iteration, the signals are confined near the straight line connecting the positions of Alice and Bob, so it will largely reduce the valid placement of an Eavesdropper. Sometimes, this reduction can be prohibitive for Eavesdropper to wiretap the channel since the reduced space can be readily protected. Two …


A High-Efficiency Low Power Rectifier For Wireless Power Transfer, Zachary Loy, Alden Fisher, Brian Vaughn, Dimitrios Peroulis Aug 2018

A High-Efficiency Low Power Rectifier For Wireless Power Transfer, Zachary Loy, Alden Fisher, Brian Vaughn, Dimitrios Peroulis

The Summer Undergraduate Research Fellowship (SURF) Symposium

With the number of implantable devices that utilize electronics increasing, there is an increasing need to find alternative ways of powering them. Currently, surgery is required to replace a battery for these devices; however, with advancements in Wireless Power Transfer (WPT) methods, the need for further surgeries will become negated. This paper explores the ability of WPT as an alternative powering method by investigating rectifier Power Conversion Efficiency (PCE). The rectifier converts high frequency waves to Direct Current (DC) energy that can provide usable power to devices requiring electrical power. It is targeted for low power applications centered around a …


Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin Aug 2018

Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Stationary Hall thrusters are electric, moderate-specific impulse propulsion systems developed in Russia. These devices manipulate electric and magnetic fields to expel ionized gas (plasma) components, resulting in thrust. The success of Hall-effect engines in USSR satellite-transfer missions quickly sparked western interest in the design. Extensive government and academic study commenced shortly after the dissolution of the Soviet Union, when the technology was made available to the United States. The common SPT-100 model was the primary subject of such studies. Unfortunately, limited literature exists for rare and uncommon Hall thruster models. The T-100-3 stationary plasma thruster suffers from this gap; few …


Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison Aug 2018

Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Measurement of soil moisture, especially the root zone soil moisture, is important in agriculture, meteorology, and hydrology. Root zone soil moisture is concerned with the first meter down the soil. Active and passive remote sensing methods used today utilizing L-band(1-2GHz) are physically limited to a sensing depth of about 5 cm or less. To remotely sense the soil moisture in the deeper parts of the soil, the frequency should be lowered. Lower frequencies cannot be used in active spaceborne instruments because of their need for larger antennas, radio frequency interference (RFI), and frequency spectrum allocations. Ground-based passive remote sensing using …


Spice Based Compact Model For Electrical Switching Of Antiferromagnet, Xe Jin Chan, Jan Kaiser, Pramey Upadhyaya Aug 2018

Spice Based Compact Model For Electrical Switching Of Antiferromagnet, Xe Jin Chan, Jan Kaiser, Pramey Upadhyaya

The Summer Undergraduate Research Fellowship (SURF) Symposium

A simulation framework that can model the behavior of antiferromagnets (AFMs) is essential to building novel high-speed devices. The electrical switching of AFMs allows for high performance memory applications. With new phenomena in spintronics being discovered, there is a need for flexible and expandable models. With that in mind, we developed a model for AFMs which can be used to simulate AFM switching behavior in SPICE. This approach can be modified for adding modules, keeping pace with new developments. The proposed AFM switching model is based on the Landau-Lifshitz-Gilbert equation (LLG). LLG along with an exchange coupling module is implemented …


The Relationship Between Electrical Conductivity And Magnetically Damped Motion, Kalem Akhtar Jun 2018

The Relationship Between Electrical Conductivity And Magnetically Damped Motion, Kalem Akhtar

The International Student Science Fair 2018

Varying electrical conductivities of different, non-magnetic metals appears to affect the magnitude of magnetically damped motion. To determine the relationship between magnetic damping and conductivity an experiment was designed using different length tubes of aluminium, copper and brass. The tubes had the same diameter and similar wall thickness. A short, cylindrical neodymium magnet was dropped through the tubes of and the time for the magnet to traverse the tube was recorded using a smartphone camera. These times allowed for the terminal velocity to be calculated for each metal length and the average terminal velocity for each metal was determined. This …


Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu Aug 2017

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are useful tools to analyze brain activities given active stimulation. However, the electromagnetic noise from the MRI distorts the brain signal recording and damages the subject with excessive heat generated on the electrodes attached to the skin. MRI-compatible recording and stimulation systems previously developed at LIBI lab were capable of removing the electromagnetic noise during the imaging process. Previously, the hardware systems had required the integrative software that could control both circuits simultaneously and enable users to easily change recording and stimulation parameters. Graphical user interface (GUI) programmed with computer language informed …


Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao Oct 2016

Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


Triad Computing, Madison Hanberry Apr 2016

Triad Computing, Madison Hanberry

Georgia State Undergraduate Research Conference

No abstract provided.


Mass-Positioning Of Nanodiamonds Using Squeegee Technique, Ran Cui, Mikhail Y. Shalaginov, Vladimir M. Shalaev Aug 2015

Mass-Positioning Of Nanodiamonds Using Squeegee Technique, Ran Cui, Mikhail Y. Shalaginov, Vladimir M. Shalaev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Fluorescent color centers in diamond nanocrystals have recently become the focus of researchers because of their potential applications in quantum information processing, nano-sensing, biomarking, and bioimaging. One of the biggest challenges in working with nanodiamonds is how to position them precisely and efficiently to create strong interaction with nanoscale photonic structures. The most popular methods to position nanodiamonds are spin-coating and transporting via scanning probe microscope tip. On the one hand, spin-coating, where nanodiamonds are randomly located, is not precise; on the other hand, the tip-based technique, where a single nanodiamond is picked and dropped, is tedious and time-consuming. Hence, …


Simulation Design For Photovoltaics Using Finite Difference Time Domain And Quadratic Complex Rational Function Methods, Jacob R. Duritsch, Haejun Chung, Peter Bermel Aug 2015

Simulation Design For Photovoltaics Using Finite Difference Time Domain And Quadratic Complex Rational Function Methods, Jacob R. Duritsch, Haejun Chung, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photovoltaics (PV) can in principle supply enough renewable energy to offset a great deal of fossil fuel usage. To achieve this transition, it is critical to develop improved PV cells with decreased material costs and improved efficiencies. This goal can be greatly facilitated by a tool simulating the absorption and efficiency of experimentally relevant 3-D PV designs made of realistic materials, including those that have not yet been discovered. By incorporating the quadratic complex rational function algorithm (QCRF) with the finite difference time domain methods (FDTD), simulations can include frequency response and optical properties, while allowing full customization of tandem …


Simplified Generation Of The Input Models Of Object Oriented Micromagnetic Framework (Oommf), Jinyang Yu, Rafatul Faria, Supriyo Datta, Tanya A. Faltens Aug 2015

Simplified Generation Of The Input Models Of Object Oriented Micromagnetic Framework (Oommf), Jinyang Yu, Rafatul Faria, Supriyo Datta, Tanya A. Faltens

The Summer Undergraduate Research Fellowship (SURF) Symposium

Object Oriented MicroMagnetic Framework (OOMMF) is a micromagnetic simulation tool. It takes a memory initialization file (MIF) as the input and outputs various forms of data such as data table, graph and magnetic configuration plots. It is accurate and fast compared to other existing tools such as MATLAB. Few experimentalists used it in the past, however, due to two main reasons. First, OOMMF requires a specific version of programming environment on the local computer which is difficult to be installed. Second, MIF file is very complicated to code and it also requires users to read a lengthy guidelines. Our solution …


Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen Aug 2015

Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quantum simulation using ultra-cold atoms, such as Bose-Einstein Condensates (BECs), offers a very flexible and well controlled environment to simulate physics in different systems. For example, to simulate the effects of spin orbit coupling (SOC) on electrons in solid state systems, we can make a SOC BEC which mimics the behavior of SOC electrons. The goal of this project is to see how the superfluid property of BECs change in the presence of SOC. In particular, we plan to measure the critical velocity of an 87Rb BEC with and without SOC by stirring it with a laser. This laser needs …


Simulation Of Plasmonic Waveguides Based On Long-Range Surface Plasmon Polaritons, Yugang Jing, Alexandra Boltasseva, Nathaniel Kinsey Aug 2014

Simulation Of Plasmonic Waveguides Based On Long-Range Surface Plasmon Polaritons, Yugang Jing, Alexandra Boltasseva, Nathaniel Kinsey

The Summer Undergraduate Research Fellowship (SURF) Symposium

The demand for faster and smaller computing devices is growing larger and larger. In the recent decade, research has proven that plasmonic devices have exciting characteristics and performance for next generation on‑chip structures. However, most of these devices contain noble metals and are not CMOS compatible. This work numerically investigates the performance of plasmonic waveguide designs made of TiN, a CMOS compatible material with optical properties similar to gold. Through our work, we demonstrate that TiN nanophotonic devices can be useful for inter-chip connections. A series of simulations using COMSOL Multiphysics were performed to test the performance of these structures. …


Modeling Thermophotovoltaic Rare Earth Based Selective Emitters, Anubha Mathur, Enas Said Sakr, Peter Bermel Aug 2014

Modeling Thermophotovoltaic Rare Earth Based Selective Emitters, Anubha Mathur, Enas Said Sakr, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermophotovoltaic (TPV) devices convert heat to electricity using thermal radiation to illuminate a photovoltaic (PV) diode. Typically, this radiation is generated by a blackbody-like emitter. Such an emission spectrum includes a broad range of wavelengths, but only higher energy photons can be converted by the PV diode, which severely limits efficiencies. Thus, introducing a selective emitter and filter to recycle unwanted photons could potentially greatly enhance performance. In this work, we consider a rare earth-doped selective emitter structure to increase the number of photons emitted above the bandgap of the photovoltaic (PV) cell, while minimizing the total power emitted below …


Simulating Nanoscale Optics In Photovoltaics With The S-Matrix Method, Dalton Chaffee, Xufeng Wang, Peter Bermel Aug 2014

Simulating Nanoscale Optics In Photovoltaics With The S-Matrix Method, Dalton Chaffee, Xufeng Wang, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the push to build high-efficiency solar cells with less materials usage, thin-film solar cells have attracted an increasing amount of interest. Thin films are particularly attractive if they could exhibit light trapping and photon recycling capabilities exceeding those of traditional wafer-based cells. Recent work by Alta Devices demonstrating a record single-junction efficiency of 28.8% with a gallium arsenide thin film cell shows the potential. However, most existing simulation tools do not handle these properties well -- particularly photon recycling. In this work, we develop an improved solar cell simulation tool to accurately predict thin-film performance. It is based on …


Improved Microrobotic Control Through Image Processing And Automated Hardware Interfacing, Archit R. Aggarwal, Wuming Jing, David J. Cappelleri Aug 2014

Improved Microrobotic Control Through Image Processing And Automated Hardware Interfacing, Archit R. Aggarwal, Wuming Jing, David J. Cappelleri

The Summer Undergraduate Research Fellowship (SURF) Symposium

Untethered submilliliter-sized robots (microrobots) are showing potential use in different industrial, manufacturing and medical applications. A particular type of these microrobots, magnetic robots, have shown improved performance in power and control capabilities compared to the other thermal and electrostatic based robots. However, the magnetic robot designs have not been assessed in a robust manner to understand the degree of control in different environments and their application feasibility. This research project seeks to develop a custom control software interface to provide a holistic tool for researchers to evaluate the microrobotic performance through advance control features. The software deliverable involved two main …


An Approximation Method For Solving Complex Electromagnetics Problems Using The Volume Integral Equation, Ryan Nobis, Dan Jiao, Saad Omar Oct 2013

An Approximation Method For Solving Complex Electromagnetics Problems Using The Volume Integral Equation, Ryan Nobis, Dan Jiao, Saad Omar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solving complex electric field problems can lead researchers to a host of electronic characteristics about an inhomogeneous, complex object. However due to the complexity of these electric fields, a computer needs to be used in order to solve them. Due to the size of the matrices for some problems, methods for improving speed and performance for these algorithms are absolutely necessary. A Volume Integral Equation was used to solve the Electric Field Displacement, D, and approximate the differential term in this equation. The problem was next discretized using phasors, so that it can computationally be solved. Data used to form …


Finite-Difference Time-Domain Simulation Of Photovoltaic Structures Using A Graphical User Interface For Meep, Xin Tze Tee, Peter Bermel Oct 2013

Finite-Difference Time-Domain Simulation Of Photovoltaic Structures Using A Graphical User Interface For Meep, Xin Tze Tee, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is a large and growing need for accurate full-wave optical simulations of complex systems such as photovoltaic (PV) cells, particularly at the nanoscale. A finite-difference time-domain tool known as MEEP offers this capability in principle, through C++ libraries and the Scheme programming language. For expert users, this approach has been quite successful, but there is also great interest from new and less frequent users in starting to use MEEP. In order to facilitate this process, we have developed a graphical user interface (GUI) for MEEP, geared toward simulation of 2D and 3D PV cell geometries, freely available through a …


Thermophotovoltaic System Efficiency Simulation, Qingshuang Chen, Roman Shugayev, Peter Bermel Oct 2013

Thermophotovoltaic System Efficiency Simulation, Qingshuang Chen, Roman Shugayev, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermophotovoltaic (TPV) power systems, which convert heat into electricity using a photovoltaic diode to collect thermal radiation, have attracted increasing attention in recent work. It has recently been proposed that new optical structures such as photonic crystals can significantly improve the efficiency of these devices in two ways. First, the electronic bandgap of the TPV diode should match the photonic bandgap of the emitter, in order to ensure that the majority of emitted photons can be converted. Second, a photonic crystal short-pass optical filter can be added to the front of the TPV diode to send long wavelength photons back …


Rfid And The Millennium: Item Status Api, Wilson Chu Apr 2012

Rfid And The Millennium: Item Status Api, Wilson Chu

Hong Kong Innovative Users Group Meetings

No abstract provided.


Unlv Em-Dot Research, Highlights Of Improvised Electric Detonator (Wire Melt) Research, And Comments On Basic Research With Unlv Non-Equilibrium Plasma Pinch, Robert A. Schill Jr. Feb 2012

Unlv Em-Dot Research, Highlights Of Improvised Electric Detonator (Wire Melt) Research, And Comments On Basic Research With Unlv Non-Equilibrium Plasma Pinch, Robert A. Schill Jr.

NSTec UNLV Symposium

UNLV EM DOT

•Patented
–Patent Number: 7,482,814 [1/27/2009]
•Novel Differential Dot
–Wide bandwidth & Matched
–Symmetric, shielded sensor
–Measures the E and B fields at a single point in space simultaneously
•Transient Calibration Technique Developed –Excellent Agreement
–Low inductance test stand –relatively uniform B-field
–Low capacitance test stand –relatively uniform E-field
–Test stand is the limiting factor at this time