Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini Jan 2022

Optical Signal Processing With Discrete-Space Metamaterials, Mohammad Moein Moeini

Wayne State University Dissertations

As digital circuits are approaching the limits of Moore’s law, a great deal of efforthas been directed to alternative computing approaches. Among them, the old concept of optical signal processing (OSP) has attracted attention, revisited in the light of metamaterials and nano-photonics. This approach has been successful in realizing basic mathematical operations, such as derivatives and integrals, but it is difficult to be applied to more complex ones. Inspired by digital filters, we propose a radically new OSP approach, able to realize arbitrary mathematical operations over a nano-photonic platform. We demonstrate this concept for the case of spatial differentiation, image …


High Mobility N-Type Field Effect Transistors Enabled By Wse2/Pdse2 Heterojunctions, Arthur Bowman Iii Jan 2021

High Mobility N-Type Field Effect Transistors Enabled By Wse2/Pdse2 Heterojunctions, Arthur Bowman Iii

Wayne State University Dissertations

Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) have emerged as a promising candidate for post-silicon electronics. Few-layer tungsten diselenide (WSe2), a well-studied TMD, has sown high hole mobility and ON/OFF ratio in field effect transistor (FET) devices. But the n-type performance of WSe2 is still quite limited by the presence of a substantial Schottky Barrier. Palladium diselenide, (PdSe2) is a newly discovered TMD that is of interest because of its high electron mobility, and moderate ON/OFF ratios. However, despite its relatively small bandgap, the n-type performance of few-layer PdSe2 FETs has also been limited by a Schottky barrier, …


Improved Contacts And Device Performance In Mos2 Transistors Using 2d Semiconductor Interlayers, Kraig Andrews Jan 2020

Improved Contacts And Device Performance In Mos2 Transistors Using 2d Semiconductor Interlayers, Kraig Andrews

Wayne State University Dissertations

The rapid growth of modern electronics industry over the past half-century has been sustained by the continued miniaturization of silicon-based electronics. However, as fundamental limits approach, there is a need to search for viable alternative materials for next-generation electronics in the post-silicon era. Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) have attracted much attention due to their atomic thickness, absence of dangling bonds and moderately high carrier mobility. However, achieving low-resistance contacts has been major impediment in developing high-performance field-effect transistors (FETs) based on 2D semiconductors. A substantial Schottky barrier (SB) is often present at the metal/2D-semicondcutor interface, …


Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing, Eric Daniel Morris Jan 2020

Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing, Eric Daniel Morris

Wayne State University Dissertations

Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment.

Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup …


Identification Of Streptococcus Pyogenes Using Raman Spectroscopy, Ehsan Majidi Jan 2018

Identification Of Streptococcus Pyogenes Using Raman Spectroscopy, Ehsan Majidi

Wayne State University Dissertations

Despite the attention that Raman Spectroscopy has gained recently in the area of pathogen identification, the spectra analyses techniques are not well developed. In most scenarios, they rely on expert intervention to detect and assign the peaks of the spectra to specific molecular vibration. Although some investigators have used machine-learning techniques to classify pathogens, these studies are usually limited to a specific application, and the generalization of these techniques is not clear. Also, a wide range of algorithms have been developed for classification problems, however, there is less insight to applying such methods on Raman spectra. Furthermore, analyzing the Raman …


Dielectric Anomalies Of Both Chiral And Achiral Nematogens Near The Isotropic To Mesogenic Phase Transition, Garrett Justin Godfrey Jan 2016

Dielectric Anomalies Of Both Chiral And Achiral Nematogens Near The Isotropic To Mesogenic Phase Transition, Garrett Justin Godfrey

Wayne State University Dissertations

The dielectric properties of nematic liquid crystals were studied in both the achiral and chiral limits. For achiral nematics, the literature documents that pretransitional curvature occurs for polar molecules on both sides of the nematic and isotropic phase transition. This curvature is due to anti-parallel dimer formation. However, past models have failed to quantitatively describe pretransitional curvature. Through a generalization of the order parameter, a macroscopic model has been developed to mathematically describe the pretransitional curvature on the isotropic side of the transition. The new model was fitted to dielectric data from the literature. Meaningful parameter estimates were extracted.

The …


Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain Jan 2016

Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain

Wayne State University Dissertations

The ultra-thin body of monolayer (and few-layer) two dimensional (2D) semiconducting materials such as transitional metal dichalconiges (TMDs), black phosphorous (BP) has demonstrated tremendous beneficial physical, transport, and optical properties for a wide range of applications. Because of their ultrathin bodies, the properties of 2D materials are highly sensitive to environmental effects. Particularly, the performance of 2D semiconductor electronic devices is strongly dependent on the substrate/dielectric properties, extrinsic impurities and absorbates. In this work, we systematically studied the transport properties of mechanically exfoliated few layer TMD field-effect transistors (FETs) consistently fabricated on various substrates including SiO2,Parylene –C, Al2O3, SiO2 modified …


An Automated System To Measure The Quantum Efficiency Of Ccds For Astronomy, Rebecca Ann Coles Jan 2016

An Automated System To Measure The Quantum Efficiency Of Ccds For Astronomy, Rebecca Ann Coles

Wayne State University Dissertations

We describe a system to measure the Quantum Efficiency in the wavelength range of 300nm to 1100nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instruments to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. This system will be part of a production facility at Brookhaven National Lab for the basic component of the LSST camera.


Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick Jan 2016

Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick

Wayne State University Dissertations

In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable …


Multiferroicity In Iron Vanadate, Magnetite And Polyvinylidene Fluoride Nanocomposite Films, Ehab Hamdy Abdelmonaim Abdelhamid Jan 2016

Multiferroicity In Iron Vanadate, Magnetite And Polyvinylidene Fluoride Nanocomposite Films, Ehab Hamdy Abdelmonaim Abdelhamid

Wayne State University Dissertations

With the increasing demand on cheaper and better performance multifunctional materials for different applications, it is becoming more crucial to have a better understanding of the physics needed to tailor more devices and materials to fit better in every day’s technological needs. Materials which show more than one ferroic order simultaneously –namely, multiferroics– are of particular importance for their potential applications as multiple state memory elements, transducers and electrically tunable microwave devices.

In this work, we studied FeVO4 single crystals as an example on low symmetry multiferroics. We focused on the anisotropy in those crystals in an attempt to nail …


Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang Jan 2016

Two-Dimensional Low-Resistance Contacts For High Performance Wse2 And Mos2 Transistors, Hsun Jen Chuang

Wayne State University Dissertations

ABSTRACT

TWO-DIMENSIONAL LOW-RESISTANCE CONTACTS FOR HIGH PERFORMANCE WSe2 and MoS2, TRANSISTORS

by

Hsun-jen Chuang

May 2016

Advisor: Dr. Zhixian Zhou

Major: Physics

Degree: Doctor of Philosophy

Two-dimensional layered materials beyond graphene such as transition metal dichalcogenides (TMDs) have attracted a lot of interests due to their superior property in many aspects. In this work, I am focusing on two TMD materials: WSe2 and MoS2. The main objective this work is to develop novel approaches to fabricating low-resistance ohmic contacts to TMDs for low power, high performance electronic applications. First, we used graphene as electrical contacts for WSe2 field-effect transistor with …


Fe3o4 Nanoparticles For Magnetic Hyperthermia And Drug Delivery: Synthesis, Characterization And Cellular Studies, Maheshika Palihawadana Arachchige Jan 2016

Fe3o4 Nanoparticles For Magnetic Hyperthermia And Drug Delivery: Synthesis, Characterization And Cellular Studies, Maheshika Palihawadana Arachchige

Wayne State University Dissertations

In recent years, magnetic nanoparticles (MNPs), especially superparamagnetic Fe3O4nanoparticles, have attracted a great deal of attention because of their potential applications in biomedicine. Among the other applications, Magnetic hyperthermia (MHT), where localized heating is generated by means of relaxation processes in MNPs when subjected to a radio frequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. Specific absorption rate (SAR), which measures the efficiency of heat generation, depends on magnetic properties of the particles such as saturation magnetization (Ms), magnetic anisotropy (K), particle size distribution, magnetic dipolar interactions, and the rheological properties of the target medium.We …


Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan Jan 2016

Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance, Sabarish Chandramohan

Wayne State University Dissertations

For the fabrication, focused ion beam parameters are investigated to successfully fabricate dense periodical patterns, such as gratings, on hard transition metal nitride such as zirconium nitride. Transition metal nitrides such as titanium nitride and zirconium nitride have recently been studied as alternative materials for plasmonic devices because of its plasmonic resonance in the visible and near-infrared ranges, material strength, CMOS compatibility and optical properties resembling gold. Coupling of light on the surface of these materials using sub-micrometer gratings gives additional capabilities for wider applications. Here we report the fabrication of gratings on the surface of zirconium nitride using gallium …


Optimization Of Transition-Metal Dichalcogenides Based Field- Effect- Transistors Via Contact Engineering, Meeghage Madusanka Perera Jan 2016

Optimization Of Transition-Metal Dichalcogenides Based Field- Effect- Transistors Via Contact Engineering, Meeghage Madusanka Perera

Wayne State University Dissertations

ABSTRACT

Optimization of Transition-Metal Dichalcogenides based Field- Effect-Transistors via contact engineering

by

Meeghage M Perera

September , 2016

Advisor : Dr. Zhixian Zhou

Major: Physics (Condensed mater physics/nano-electronics)

Degree: Doctor of Philosophy

Layered transition Metal Dichalcogenides (TMDs) have demonstrated a wide range of remarkable properties for applications in next generation nano-electronics. These systems have displayed many “graphene-like” properties including a relatively high carrier mobility, mechanical flexibility, chemical and thermal stability, and moreover offer the significant advantage of a substantial band gap. However, the fabrication of high performance field-effect transistors (FETs) of TMDs is challenging mainly due to the formation of …


Frequency Domain Ultrasound Waveform Tomography Breast Imaging, Gursharan Singh Sandhu Jan 2015

Frequency Domain Ultrasound Waveform Tomography Breast Imaging, Gursharan Singh Sandhu

Wayne State University Dissertations

Ultrasound tomography is an emerging modality for imaging breast tissue for the detection of disease. Using the principles of full waveform inversion, high-resolution quantitative sound speed and attenuation maps of the breast can be created. In this thesis, we introduce some basic principles of imaging breast disease and the formalism of sound wave propagation. We present numerical methods to model acoustic wave propagation as well methods to solve the corresponding inverse problem. Numerical simulations of sound speed and attenuation reconstructions are used to assess the efficacy of the algorithm. A careful review of the preprocessing techniques needed for the successful …


Modeling Of Mouse Eye And Errors In Ocular Parameters Affecting Refractive State, Gurinder Bawa Jan 2013

Modeling Of Mouse Eye And Errors In Ocular Parameters Affecting Refractive State, Gurinder Bawa

Wayne State University Dissertations

ABSTRACT

MODELING OF MOUSE EYE AND ERRORS IN OCULAR PARAMETERS AFFECTING REFRACTIVE STATE

by

GURINDER BAWA

September 2013

Advisor: Dr. Ivan Avrutsky

Major: Electrical Engineering

Degree: Doctor of Philosophy

Rodents eye are particularly used to study refractive error state of an eye and development of refractive eye. Genetic organization of rodents is similar to that of humans, which makes them interesting candidates to be researched upon. From rodents family mice models are encouraged over rats because of availability of genetically engineered models. Despite of extensive work that has been performed on mice and rat models, still no one is able …


Raman Spectroscopy And Diffuse Reflectance Spectroscopy For Diagnosis Of Human Cancer And Acanthosis Nigricans, Suneetha Devpura Jan 2012

Raman Spectroscopy And Diffuse Reflectance Spectroscopy For Diagnosis Of Human Cancer And Acanthosis Nigricans, Suneetha Devpura

Wayne State University Dissertations

Cancer and diabetes are common chronic diseases in today's world causing numerous deaths in adults as well as children. Most common types of cancers in adults include prostate, lung, breast, colorectal and head and neck squamous cell carcinoma, while among children; leukemia, and brain and central nervous system cancers are quite common. In each of these cases, early detection of the cancer or disease dramatically increases the chances of successful treatment. In recent years, there has been much interest in using Raman spectroscopy and diffuse reflectance spectroscopy as analytical optical spectroscopic methods for early diagnosis of diseases. Raman spectroscopy can …


Effects Of Transition Metal Doping On Multiferroic Ordering In Ni3v2o8 And Fevo4, Akila Deeghayu Kumarasiri Jan 2012

Effects Of Transition Metal Doping On Multiferroic Ordering In Ni3v2o8 And Fevo4, Akila Deeghayu Kumarasiri

Wayne State University Dissertations

We have studied the effects of doping both non-magnetic and magnetic ions on the phase transitions and multiferroic ordering in two multiferroic oxides; Ni3V2O8 and FeVO4. Magnetic, dielectric, specific heat, polarization and AC susceptibility measurements were used to track changes in phase transition temperatures. We found that the two higher temperature magnetic transitions in Ni3V2O8; TH = 9.1 K and TL = 6.3 K are suppressed to lower temperatures with all transition metal dopants. For Zn doping, the rates of the suppression of both TH and TL with dopant fraction are consistent with simple site dilution for two-dimensional spin systems, …


Accelerated Lattice Boltzmann Method For Colloidal Suspensions Rheology And Interface Morphology, Hassan Farhat Jan 2010

Accelerated Lattice Boltzmann Method For Colloidal Suspensions Rheology And Interface Morphology, Hassan Farhat

Wayne State University Dissertations

ABSTRACT

ACCELERATED LATTICE BOLTZMANN MODEL FOR COLLOIDAL SUSPENSIONS RHEOLOGY AND INTERFACE MORPHOLOGY

by

HASSAN FARHAT

July 2010

Advisor: Dr. Singh Trilochan

Co-Advisor: Dr. Joon Sang Lee

Major: Mechanical Engineering

Degree: Doctor of Philosophy

Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior.

Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications.

This work introduces the main building-blocks for …


Electro-Optic And Magneto-Dielectric Properties Of Multifunctional Nitride And Oxide Materials, Ambesh Dixit Jan 2010

Electro-Optic And Magneto-Dielectric Properties Of Multifunctional Nitride And Oxide Materials, Ambesh Dixit

Wayne State University Dissertations

ABSTRACT

Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties.

Thin …