Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Development Of An Electro-Centrifugal Spinning Setup For Nanofiber Production Research, David A. Treviño Dec 2022

Development Of An Electro-Centrifugal Spinning Setup For Nanofiber Production Research, David A. Treviño

Theses and Dissertations

Nanofiber production methods have been developed and improved over the course of decades. Each process allows for the creation of fibers with distinct properties that provide benefits to growing number of applications. On the same note, every process has shortcomings that keep them from being universally valid for all applications. This research considers electrospinning and centrifugal spinning systems and attempts to create a process which maintains high fiber qualities like small and consistent fiber diameters, and improved fiber alignment while providing a high fiber yield. The electro-centrifugal (EC) spinning machine that resulted was designed utilizing computer aided design (CAD) software …


Fabrication And Characterization Of Polyvinylidene Fluoride Nanofibers For Energy Harvesting Applications, Jui Vitthal Kharade Aug 2021

Fabrication And Characterization Of Polyvinylidene Fluoride Nanofibers For Energy Harvesting Applications, Jui Vitthal Kharade

Theses and Dissertations

Miniaturization of portable devices demand a power source that does not require recharging or replacement. Piezoelectric energy harvesters are devices that harvest mechanical energy from environment and convert it into electrical energy thus being an ideal candidate for replacing batteries in small devices. Objective of this thesis is to fabricate an energy harvester with efficient energy conversion. In this thesis, the effect of fabricating mechanisms, solvents, and composites on polyvinylidene nanofibers are analysed in order to improve the piezoelectric response of the nanofibers. These nanofibers are then used for fabricating an energy harvester. The energy harvester is implemented in a …


Exploration Of Antimicrobial And Cell Proliferation Properties Of Nanofibers Incorporating Nopal (O. Cochenillifera) Extract, Cristobal Rodriguez May 2021

Exploration Of Antimicrobial And Cell Proliferation Properties Of Nanofibers Incorporating Nopal (O. Cochenillifera) Extract, Cristobal Rodriguez

Theses and Dissertations

This study focused on the fabrication of Forcespinning® nanofibers composed of Opuntia cochenillifera, ‘nopal’, mucilage (N) extract, chitosan (CH), and pullulan (PL) (N/CH/PL) were developed with an optimum fiber average diameter of 406±127 nm, and studied for their ability to sustain adhesion and proliferation of mouse embryonic fibroblast (NIH 3T3) cells. After a 6-day incubation period, N/CH/PL nanofibers displayed robust cell proliferation, while also exhibiting inhibitory properties through an N extract dip-coating process against gram-negative bacteria Escherichia coli in a 24 h bacterial growth study. A demonstration of integrated natural bioactive compounds with combined biodegradable polymers, provide an enhanced …


Development Of Plant Extract-Based Composite Fibers And Aerogels, Raul C. Barbosa Aug 2020

Development Of Plant Extract-Based Composite Fibers And Aerogels, Raul C. Barbosa

Theses and Dissertations

The aim of this study is to use the solid templating process of pullulan nanofibers in order to produce biocompatible, biodegradable, and antibacterial aerogels. The developed aerogels were produced using cross-linked pullulan nanofibers, which provide a water-stable structure allowing them to be used as wound dressing material. The morphology, thermal properties, water solubility, and thermal and physical properties of the nanofibers and aerogels were characterized. Furthermore, the antibacterial effect against gram-negative bacteria, Escherichia coli, and the biocompatibility using mouse embryonic fibroblasts (NIH 3T3) were investigated.


Development Of Flexible Photo-Mechanoluminescent Polymeric Based Systems, Carlos Hernandez May 2019

Development Of Flexible Photo-Mechanoluminescent Polymeric Based Systems, Carlos Hernandez

Theses and Dissertations

The project focuses on the creation of nanofiber systems with enhanced photo-mechanoluminescent response and high mechanical flexibility to further enhance promising optical applications. Lanthanide-Polyvinyl Di-Fluoride fiber systems were created using centrifugal spinning and characterized using SEM, FTIR, XPS, DSC, XRD, and PL. Fibers luminescence response was gotten when induced by ultraviolet light and the application of an impact force.


Polymeric Pvdf Fibers For Piezoelectric Applications In Energy Harvesting, Misael E. Martinez May 2019

Polymeric Pvdf Fibers For Piezoelectric Applications In Energy Harvesting, Misael E. Martinez

Theses and Dissertations

This work focuses on developing and characterizing the piezoelectric response of Cerium doped Polyvinylidene Fluoride (PVDF) fine fibers and the effects of dopants and alignment on the formation of the β-phase and consequently on the piezoelectric performance. Six sets of fiber mats were prepared varying the concentration (2.5–7.5wt%) of Cerium (III) Nitrate-Hexahydrate and Ammonium-Cerium (IV) Sulfate-Dihydrate. Fiber mats were developed using the Forcespinning® technique and the angular velocity and dopant concentration were adjusted to obtain a synergy between fiber yield and fiber diameter. Fourier Transform Infrared Spectroscopy showed a significant enhancement in the PVDF β-phase and inhibition of the non-polar …


Lead Doped Carbon Nanofibers In Li-Ion Batteries, Omar Torres May 2018

Lead Doped Carbon Nanofibers In Li-Ion Batteries, Omar Torres

Theses and Dissertations

Lead acid batteries have been a very reliable rechargeable battery since its inception in the mid-1800s. Lithium-Ion batteries have been sought out for their light-weight and capacity of holding large amounts of energy in a small amount of space. Few studies have been conducted in the use of lead in lithium-ion batteries.

In this thesis, lead-doped carbon nanofibers were produced by using the Forcespinning® method and used as an anode on a lithium-ion battery. The morphology, material characterization and thermal properties of the anode material were analyzed using the Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Thermogravimetric Analysis …


Nanomedicine Drug Delivery Across Mucous Membranes, Michael G. Lancina Iii Jan 2017

Nanomedicine Drug Delivery Across Mucous Membranes, Michael G. Lancina Iii

Theses and Dissertations

NANOMEDECINE DRUG DELIVERY ACROSS MUCOUS MEMBRANES

By Michael G. Lancina III

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth Univeristy, 2017.

Major Director: Dr. Hu Yang, Associate Professor, Chemical and Life Science Engineering

Control over the distribution of therapeutic compounds is a complex and somewhat overlooked field of pharmaceutical research. When swallowing a pill or receiving an injection, it is commonly assumed that drug will spread throughout the body in a more or less uniform concentration and find its way to wherever it is needed. In …


Forcespinning®: An Alternative Method To Fabricate Metal Oxide/Carbon Composite Nanofiber Anodes For Li-Ion Batteries, Luis Zuniga Dec 2016

Forcespinning®: An Alternative Method To Fabricate Metal Oxide/Carbon Composite Nanofiber Anodes For Li-Ion Batteries, Luis Zuniga

Theses and Dissertations

Metals and their respective oxides have been highly regarded as next generation anode materials for lithium-ion batteries (LIBs). In this research work the electrochemical performance of Sn, SnO2, and TiO2. With the advantages of nanotechnology and the Forcespinning® method of fabricating micro and nanofibers, binder-free anodes are produced from metal or metal oxide/carbon composite microfibers. Through these microfibers the electrochemical performance of the above mentioned materials are significantly improved due to the increased surface area per volume providing a large number of reaction sites for the anode materials. Further performance enhancement was achieved by also modifying the fiber microstructure to …


Thermal Conductivity Measurements Of Nanomaterials, Javier Acosta Martinez May 2016

Thermal Conductivity Measurements Of Nanomaterials, Javier Acosta Martinez

Theses and Dissertations

Thermal conductivity “k” can be defined as a material property where heat is diffused due to a temperature gradient within the material. Among the applications for thermal conductivity are: thermoelectrics, thermal interface materials, thin films, insulation, among many others. A study was made to compare the different types of studies of thermal conductivity of nanomaterials, as well as, a comparison among the different types of setups used to measure thermal conductivity. For this study a custom made thermal conductivity tester was built, this tester was validated by measuring materials with both low and high thermal conductivity, and comparing the results …


Mammary Epithelial Cells Cultured Onto Non-Woven Nanofiber Electrospun Silk-Based Biomaterials To Engineer Breast Tissue Models, Yas Maghdouri-White Apr 2014

Mammary Epithelial Cells Cultured Onto Non-Woven Nanofiber Electrospun Silk-Based Biomaterials To Engineer Breast Tissue Models, Yas Maghdouri-White

Theses and Dissertations

Breast cancer is one of the most common types of cancer affecting women in the world today. To better understand breast cancer initiation and progression modeling biological tissue under physiological conditions is essential. Indeed, breast cancer involves complex interactions between mammary epithelial cells and the stroma, both extracellular matrix (ECM) and cells including adipocytes (fat tissue) and fibroblasts (connective tissue). Therefore, the engineering of in vitro three-dimensional (3D) systems of breast tissues allows a deeper understanding of the complex cell-cell and cell-ECM interactions involved during breast tissue development and cancer initiation and progression. Furthermore, such 3D systems may provide a …


Experimental Development Of Advanced Air Filtration Media Based On Electrospun Polymer Fibers, Negar Ghochaghi Jan 2014

Experimental Development Of Advanced Air Filtration Media Based On Electrospun Polymer Fibers, Negar Ghochaghi

Theses and Dissertations

Electrospinning is a process by which polymer fibers can be produced using an electrostatically driven fluid jet. Electrospun fibers can be produced at the micro- or nano-scale and are, therefore, very promising for air filtration applications. However, because electrospun fibers are electrically charged, it is difficult to control the morphology of filtration media. Fiber size, alignment and uniformity are very important factors that affect filter performance. The focus of this project is to understand the relationship between filter morphology and performance and to develop new methods to create filtration media with optimum morphology.

This study is divided into three focus …


In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin May 2012

In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin

Theses and Dissertations

Electrospun materials have potential use in many biomedical applications such as soft tissue replacements or as scaffolds to target drug delivery to local sites. Electrospinning is a polymer processing technique that can be used to create materials composed of fibers with diameters ranging from the micron to the nanoscale. We investigated the effects of microfibrous and nanofibrous electrospun polycaprolactone (EPCL) on innate, cell-mediated, and humoral components of the immune system. Results demonstrated that in both young (12 week) and old (6 month) mice, EPCL had no effect on various immune parameters. With its lack of immunotoxicity, EPCL presents an excellent …