Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

A Constitutive Material Model For Simulating Texture Evolution And Anisotropy Effects In Cold Spray., Creston Michael Giles Dec 2022

A Constitutive Material Model For Simulating Texture Evolution And Anisotropy Effects In Cold Spray., Creston Michael Giles

Theses and Dissertations

Cold spray has seen rapid advancement since its inception and has shown significant potential as a method of additive manufacturing. However, the large plastic deformation and repeated heating/cooling cycles that the material undergoes during the cold spray process can result in gradients in material structure and large residual stresses. The purpose of this study is to extend the existing EMMI material model to include anisotropic material response through the use of orientation distribution functions to predict residual stresses and anisotropy resulting from cold spray and similar additive manufacturing processes. Through the use of a finite element simulation, yield surfaces for …


Ferrous Alloy Manufacturing For The Martian Surface Through In-Situ Resource Utilization With Ionic Liquids Harvested Iron And Bosch Process Carbon, Blake C. Stewart Aug 2022

Ferrous Alloy Manufacturing For The Martian Surface Through In-Situ Resource Utilization With Ionic Liquids Harvested Iron And Bosch Process Carbon, Blake C. Stewart

Theses and Dissertations

As research continues for the habitation of the Lunar and Martian surfaces, the need for materials for construction of structural parts, mechanical components, and tools remains as a major milestone. The use of in-situ resource utilization (ISRU) techniques is critical due to the financial, physical, and logistical burdens of sending supplies beyond low-Earth orbit. The Bosch process is currently in development as a life support system at the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) to regenerate oxygen (O2) from metabolic carbon dioxide (CO2) with the byproduct of elemental carbon (C). The Bosch process presents a …


Effects Of Cyclic Intercritical Annealing On Strength-Ductility Combinations In Medium Manganese Steels, Dawn Van Iderstine Aug 2022

Effects Of Cyclic Intercritical Annealing On Strength-Ductility Combinations In Medium Manganese Steels, Dawn Van Iderstine

Theses and Dissertations

Intercritically annealed medium manganese steels are a promising third-generation advanced high-strength steel candidate, relying on large fractions of Mn-enriched retained austenite for excellent strength-ductility combinations. The present study proposes a novel cyclic intercritical annealing to promote nucleation and efficient stabilization of austenite in a medium Mn microstructure. Design of the heat treatment is driven by the hypothesis that the distribution of ductile austenite is key in mitigating the strain incompatibility that accelerates failure in these steels. Development and preliminary testing of the heat treatment are first detailed and compared with literature results for equivalent isothermal annealing. The effects of cyclic …


Characterization Of Hydrogen Embrittlement Sensitivity In High Hardness Steels, David Ahlen Salley May 2022

Characterization Of Hydrogen Embrittlement Sensitivity In High Hardness Steels, David Ahlen Salley

Theses and Dissertations

High hardness steels can be affected by delayed brittle cracking often attributed to hydrogen embrittlement. Improved resistance to hydrogen embrittlement would be beneficial to many industries including military, automotive, and high-rise construction. While other prevention methods include coating, trapping, and barriers, design efforts in this study were focused on improving intrinsic properties to be more resistant to hydrogen embrittlement. Four alloys targeting 477 – 534 HB were designed and produced in-house and compared against a commercial grade 500 HB alloy. Charpy V-notch (CVN) impact toughness and tensile specimens were made according to ASTM E23 and ASTM E8 to characterize mechanical …


Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams Dec 2021

Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams

Theses and Dissertations

High hardness steels (HHS) are vulnerable to hydrogen embrittlement, which can lead to rapid degradation of mechanical properties. Improved resistance to hydrogen embrittlement would be beneficial to many industries including construction, automotive, and military. A comparison study was performed to assess the hydrogen susceptibility of select commercially available and in-house designed HHS alloys. Slow strain rate tensile tests, performed with specimens charged with various levels of hydrogen, provided a macroscopic view of the onset of hydrogen embrittlement. Hydrogen permeation and thermal desorption spectroscopy tests determined the uptake and diffusivity of hydrogen through the material. The evaluation of hydrogen susceptibility for …