Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Master's Theses and Project Reports

Discipline
Keyword
Publication Year

Articles 1 - 30 of 1107

Full-Text Articles in Engineering

Use Of Body Composition Imaging To Calculate 3-D Inertial Parameters For Inverse Dynamic Analysis Of Youth Pitching Arm Kinetics, Dalton James Jennings Mar 2020

Use Of Body Composition Imaging To Calculate 3-D Inertial Parameters For Inverse Dynamic Analysis Of Youth Pitching Arm Kinetics, Dalton James Jennings

Master's Theses and Project Reports

The objectives of this study were to 1) calculate participant-specific segment inertial parameters using dual energy X-ray absorptiometry (DXA) data (referred to as full DXA-driven parameters) and compare the pitching arm kinetic predictions using full DXA-driven inverse dynamics vs scaled, DXA mass-driven (using DXA masses but scaled centers of mass and radii of gyration), and DXA scaled inverse dynamics(ID) (using the full DXA-driven inertial parameters averaged across all participants), 2) examine associations between full DXA-driven kinetics and body mass index (BMI) and 3) examine associations between full DXA-driven kinetics and segment mass index (SMI). Eighteen 10- to 11- year-olds ...


Design And Implementation Of Stewart Platform Robot For Robotics Course Laboratory, Trent R. Peterson Mar 2020

Design And Implementation Of Stewart Platform Robot For Robotics Course Laboratory, Trent R. Peterson

Master's Theses and Project Reports

A Stewart Platform robot was designed, constructed, and programmed for use in Cal Poly’s ME 423 Robotics: Fundamentals and Applications laboratory section. A Stewart Platform is a parallel manipulator robot with six prismatic joints that has six degrees of freedom, able to be defined in both position and orientation. Its purpose is to supplement parallel robot material covered in lecture. Learning objectives include applying and verifying the Stewart Platform inverse kinematics and investigating the Stewart Platform’s operation, range of motion, and limitations. The Stewart Platform geometry and inverse kinematics were modeled and animated using MATLAB. The platform was ...


The Optimum Design Of A Vacuum-Compatible Manipulator To Calibrate Space Based Ultraviolet Imagers, Jason L. Grillo Jan 2020

The Optimum Design Of A Vacuum-Compatible Manipulator To Calibrate Space Based Ultraviolet Imagers, Jason L. Grillo

Master's Theses and Project Reports

Recent discoveries in geospace science have necessitated the design of compact UV imaging instruments to make space-based observations from multiple vantage points. The miniaturized ultraviolet imager (MUVI) instrument from the Space Sciences Laboratory (SSL) at UC Berkeley is under development to facilitate such discoveries on a wider scale. This thesis documents the design, integration, and characterization of a vacuum compatible manipulator to calibrate the MUVI instrument inside the UV thermal vacuum chamber at SSL. Precision linear and rotation stages were implemented with custom mounting plates to achieve four degrees of freedom. Optical components were installed to imitate the MUVI instrument ...


Flight Test Data System For Strain Measurement, Zachary David Wilson Dec 2019

Flight Test Data System For Strain Measurement, Zachary David Wilson

Master's Theses and Project Reports

This thesis describes the design and evaluation of two devices to be included in the next generation of the family of devices called the Boundary Layer Data System (BLDS). The first device, called the Quasi-Static Strain Data Acquisition System, is a continuation of the BLDS-M series of devices to be known as the Flight Test Data System (FTDS) that uses a modular approach to acquire non-flow, quasi-static mechanical strain measurements. Various breakout boards and development boards were used to synthesize the device, which were housed by a custom PCB board. The system is controlled by the SimbleeTM System on ...


Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles Dec 2019

Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles

Master's Theses and Project Reports

Collision with orbital debris poses a serious threat to spacecraft and astronauts. Hypervelocity impacts resulting from collisions mean that objects with a mass less than 1g can cause mission-ending damage to spacecraft. A means of shielding spacecraft against collisions is necessary. A means of testing candidate shielding methods for their efficacy in mitigating hypervelocity impacts is therefore also necessary. Cal Poly’s Electromagnetic Railgun was designed with the goal of creating a laboratory system capable of simulating hypervelocity (≥ 3 km/s) impacts. Due to several factors, the system was not previously capable of high-velocity (≥ 1 km/s) tests. A deficient ...


Evaluating Urban Downtown One-Way To Two-Way Street Conversion Using Microscopic Traffic Simulation, Bernice Liu Dec 2019

Evaluating Urban Downtown One-Way To Two-Way Street Conversion Using Microscopic Traffic Simulation, Bernice Liu

Master's Theses and Project Reports

Located in the heart of Silicon Valley, Downtown San Jose is attracting new residents, visitors, and businesses. Clearly, the mobility of these residents, visitors, and businesses cannot be accommodated by streets that focus on the single-occupancy automobile mode. To increase the potential for individuals to use non-single-occupancy modes of travel, the downtown area must have a cohesive plan to integrate multimodal use and public life. Complete streets are an integral component of the multi-modal transport system and more livable communities. Complete streets refer to roads designed to accommodate multiple modes, users, and activities including walking, cycling, transit, automobile, and nearby ...


Dynamic Pressure Sensing For The Flight Test Data System, Marc Y. Goupil Dec 2019

Dynamic Pressure Sensing For The Flight Test Data System, Marc Y. Goupil

Master's Theses and Project Reports

This thesis describes the design, assembly, and test of the FTDS-K, a new device in the Boundary Layer Data System (BLDS) family of flight data acquisition systems. The FTDS-K provides high-frequency, high-gain data acquisition capability for up to two pressure sensors and an additional three low-frequency pressure sensors. Development of the FTDS-K was separated into a core module, specialized analog subsystem, and practical testing of the FTDS-K in a flow measurement mission. The core module combines an nRF52840-based microcontroller module, switching regulator, microSD card, real-time clock, temperature sensor, and trio of pressure sensors to provide the same capabilities as previous-generation ...


Visual Speech Recognition Using A 3d Convolutional Neural Network, Matthew Rochford Dec 2019

Visual Speech Recognition Using A 3d Convolutional Neural Network, Matthew Rochford

Master's Theses and Project Reports

Main stream automatic speech recognition (ASR) makes use of audio data to identify spoken words, however visual speech recognition (VSR) has recently been of increased interest to researchers. VSR is used when audio data is corrupted or missing entirely and also to further enhance the accuracy of audio-based ASR systems. In this research, we present both a framework for building 3D feature cubes of lip data from videos and a 3D convolutional neural network (CNN) architecture for performing classification on a dataset of 100 spoken words, recorded in an uncontrolled envi- ronment. Our 3D-CNN architecture achieves a testing accuracy of ...


Design, Modeling And Control Of A Two-Wheel Balancing Robot Driven By Bldc Motors, Charles T. Refvem Dec 2019

Design, Modeling And Control Of A Two-Wheel Balancing Robot Driven By Bldc Motors, Charles T. Refvem

Master's Theses and Project Reports

The focus of this document is on the design, modeling, and control of a self-balancing two wheel robot, hereafter referred to as the balance bot, driven by independent brushless DC (BLDC) motors. The balance bot frame is composed of stacked layers allowing a lightweight, modular, and rigid mechanical design. The robot is actuated by a pair of brushless DC motors equipped with Hall effect sensors and encoders allowing determination of the angle and angular velocity of each wheel. Absolute orientation measurement is accomplished using a full 9-axis IMU consisting of a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer ...


Comparison Of Modern Controls And Reinforcement Learning For Robust Control Of Autonomously Backing Up Tractor-Trailers To Loading Docks, Journey Mcdowell Nov 2019

Comparison Of Modern Controls And Reinforcement Learning For Robust Control Of Autonomously Backing Up Tractor-Trailers To Loading Docks, Journey Mcdowell

Master's Theses and Project Reports

Two controller performances are assessed for generalization in the path following task of autonomously backing up a tractor-trailer. Starting from random locations and orientations, paths are generated to loading docks with arbitrary pose using Dubins Curves. The combination vehicles can be varied in wheelbase, hitch length, weight distributions, and tire cornering stiffness. The closed form calculation of the gains for the Linear Quadratic Regulator (LQR) rely heavily on having an accurate model of the plant. However, real-world applications cannot expect to have an updated model for each new trailer. Finding alternative robust controllers when the trailer model is changed was ...


A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses and Project Reports

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that ...


Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman Oct 2019

Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman

Master's Theses and Project Reports

In order to accurately conduct the preliminary and detailed design of solar powered Unmanned Aerial Systems (UAS), it is necessary to have a thorough understanding of the systems involved. In particular, it is desirable to have mathematical models and analysis tools describing the energy income and expenditure of the vehicle. Solar energy income models may include available solar irradiance, photovoltaic array power output, and maximum power point tracker efficiency. Energy expenditure models include battery charging and discharging characteristics, propulsion system efficiency, and aerodynamic efficiency. In this thesis, a series of mathematical models were developed that characterize the performance of these ...


A Study On The Simultaneous Nitrification And Denitrification Process Of A Membrane Aerated Bioreactor Augmented By Biowish Aqua, Gavrielle Orman Oct 2019

A Study On The Simultaneous Nitrification And Denitrification Process Of A Membrane Aerated Bioreactor Augmented By Biowish Aqua, Gavrielle Orman

Master's Theses and Project Reports

Nitrogen pollution is a growing problem that is detrimental to the environment and the economy. Traditional treatment of nitrogen is a multi-stage process, expensive, operationally intensive, and requires large land areas. This research studied the effects of BiOWiSH® Aqua (Aqua), a biological enhancement product, on the simultaneous nitrification and denitrification process in a membrane aerated bioreactor (MABR) to determine if it is a feasible application for wastewater treatment. The MABR used during experimentation was a small-scale batch reactor with a continuous flow of air through a silicone membrane.

The effect of carbon source and concentration on nitrogen removal rates and ...


In-Plane Cyclic Shear Performance Of Pipe Stem Reinforced Cob Wall, Dezire Q'Anna Perez-Barbante Oct 2019

In-Plane Cyclic Shear Performance Of Pipe Stem Reinforced Cob Wall, Dezire Q'Anna Perez-Barbante

Master's Theses and Project Reports

This thesis investigates full-scale pipe stem reinforced cob walls under in-plane cyclic shear loads. Cob is the combination of clay subsoils, sand, straw and water that is built in lifts to produce monolithic walls. There is insufficient amount of information on cob as a building material in today’s age. The prior research that exists has examined varying straw content and type, water content, and mixture ratios to determine their effect on strength. There is currently one report that analyzes full-scale cob walls under in-plane loading. This thesis looks to iterate the full-scale tests and specifically studies the effect of ...


Investigation Of The Under-Body Flow Field Of A Prototype Long-Range Electric Vehicle, Matthew P. Nguyen Sep 2019

Investigation Of The Under-Body Flow Field Of A Prototype Long-Range Electric Vehicle, Matthew P. Nguyen

Master's Theses and Project Reports

This thesis presents changes to the design of the Prototype Vehicles Laboratory (PROVE Lab) Endurance Car, an electric car intended to break the Guinness World Record for the single-charge range of an electric vehicle. The design range is 1609.34 km, however at the design velocity of 104.6 kph, the drag is 196 N; which requires more battery capacity than the 100 kWh maximum of the baseline model. With a fixed frontal area, drag reduction can come from lowered velocity or reduced CD. CD reduction is attempted in four ways: side skirts between the fenders, a raised ride height ...


Cubesat Astronomy Mission Modeling Using The Horizon Simulation Framework, Alexander W. Johnson Sep 2019

Cubesat Astronomy Mission Modeling Using The Horizon Simulation Framework, Alexander W. Johnson

Master's Theses and Project Reports

The CubeSat Astronomy Network is a proposed system of multiple CubeSat spacecraft capable of performing follow-up observations of astronomical targets of interest. The system is intended to serve as a space-borne platform that can complement existing systems utilized for astronomical research by undergraduate and high school students. Much research and development work has been performed to develop model-based system engineering methodologies and products for CubeSat missions, including the Horizon Simulation Framework. The Horizon Simulation Framework enables the development of system models using the Extended Markup Language (XML), and its simulation program can generate system simulations over model-specified timespans. System requirements ...


Development Of A Tailored Flight Test Approach For Small Unmanned Aircraft Systems, Neil A. Wolfe, Neil A. Wolfe Sep 2019

Development Of A Tailored Flight Test Approach For Small Unmanned Aircraft Systems, Neil A. Wolfe, Neil A. Wolfe

Master's Theses and Project Reports

This document contains the details of a study conducted to determine an effective performance flight test approach specifically for small Unmanned Aircraft Systems (sUAS). This was done by taking proven procedures and documentation from the FAA and the Air Force for manned aircraft and tailoring them specifically for use with sUAS flight test programs. A ‘sUAS Flight Testing Handbook’ was created from the proceedings to aid commercial organizations and recreational developers conducting sUAS research without access to flight test experience. A performance flight test program was conducted with the AeroVironment RQ-20 Puma sUAS using the developed approach to verify that ...


A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson Sep 2019

A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson

Master's Theses and Project Reports

Out-of-Autoclave (OoA) processes for manufacturing aerospace-grade parts needs to be better understood to further the development and success of industries that are manufacturing reusable launch vehicles, military and commercial aircraft, and spacecraft. Overcoming the performance limitations associated with OoA, also known as low-pressure prepreg curing, methods (void count, energy absorption, etc.) will help decrease the costs associated with aerospace composite manufacturing and the negative environmental effects correlated with high-pressure composite curing methods. Experimental, theoretical, and numerical approaches are used to explore both low and high-pressure curing cycles and how the two different processes affect final cured parts. Quasi-static uniaxial compression ...


Experimental Investigation Into Utilizing Synthetic Jet Actuators To Suppress Bi-Modal Wake Behavior Behind An Ahmed Body, Daniel Jacob Baratta Sep 2019

Experimental Investigation Into Utilizing Synthetic Jet Actuators To Suppress Bi-Modal Wake Behavior Behind An Ahmed Body, Daniel Jacob Baratta

Master's Theses and Project Reports

Testing done on the flat-back Ahmed Body and other bluff bodies has shown the existence of a bi-stable reflectional symmetry-breaking wake at Reynolds numbers ranging from 340 to 2.41 x 106. Several methods of flow control, both active and passive, have been used to improve the efficiency of the Ahmed body but their effect on the bi-stable nature of the wake has not been investigated. This work details the experimental investigation done to determine if piezoelectrically driven synthetic jet actuators are capable of suppressing the bi-stable wake effects observed behind the Ahmed Body. The synthetic jets were designed ...


Implementation Of A Scale Semi-Autonomous Platoon To Test Control Theory Attacks, Erik Miller Jul 2019

Implementation Of A Scale Semi-Autonomous Platoon To Test Control Theory Attacks, Erik Miller

Master's Theses and Project Reports

With all the advancements in autonomous and connected cars, there is a developing body of research around the security and robustness of driving automation systems. Attacks and mitigations for said attacks have been explored, but almost always solely in software simulations.

For this thesis, I led a team to build the foundation for an open source platoon of scale semi-autonomous vehicles. This work will enable future research into implementing theoretical attacks and mitigations. Our 1/10 scale car leverages an Nvidia Jetson, embedded microcontroller, and sensors. The Jetson manages the computer vision, networking, control logic, and overall system control; the ...


Design Principles And Preliminary Testing Of A Micropropulsion Electrospray Thruster Research Platform, Will Alan Mcgehee Jul 2019

Design Principles And Preliminary Testing Of A Micropropulsion Electrospray Thruster Research Platform, Will Alan Mcgehee

Master's Theses and Project Reports

The need for micropropulsion solutions for spacecraft has been steadily increasing as scientific payloads require higher accuracy maneuvers and as the use of small form-factor spacecraft such as CubeSats becomes more common. Of the technologies used for this purpose, electrospray thrusters offer performance that make them an ideal choice. Electrosprays offer high accuracy impulse bits at low power and high efficiency, and have low volume requirements. Design choice reasoning and preliminary testing results are presented for two electrospray thruster designs. The first thruster, named the Demonstration thruster, is operated in atmospheric conditions and serves as a highly visible example of ...


The Effects Of Atomic Oxygen On Patch Antenna Performance And Lifetime, Max J. Barta Jul 2019

The Effects Of Atomic Oxygen On Patch Antenna Performance And Lifetime, Max J. Barta

Master's Theses and Project Reports

The space environment is a volatile and challenging place for satellites to survive in. For Low Earth Orbiting (LEO) satellites, atomic oxygen (AO) is a constant corrosive effect that degrades the outer surface of satellites over long durations. Atomic oxygen exists in the atmosphere between 180 and 675 km and has a relatively high energy at 4.5 eV, which allows AO to break molecular bonds in materials on the surfaces of spacecraft. As the number and complexity of CubeSat missions increase, there is an increased risk that AO degradation on commercial off the shelf parts (COTS), such as antenna ...


A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde Jun 2019

A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde

Master's Theses and Project Reports

Powering spacecraft with electric propulsion is becoming more common, especially in CubeSat-class satellites. On account of the risk of spacecraft interactions, it is important to have robust analysis and modeling tools of electric propulsion engines, particularly of the plasma plume. The Navier-Stokes equations used in classic continuum computational fluid dynamics do not apply to the rarefied plasma, and therefore another method must be used to model the flow. A good solution is to use the DSMC method, which uses a combination of particle modeling and statistical methods for modeling the simulated molecules. A DSMC simulation known as SINATRA has been ...


The Performance Cost Of Security, Lucy R. Bowen Jun 2019

The Performance Cost Of Security, Lucy R. Bowen

Master's Theses and Project Reports

Historically, performance has been the most important feature when optimizing computer hardware. Modern processors are so highly optimized that every cycle of computation time matters. However, this practice of optimizing for performance at all costs has been called into question by new microarchitectural attacks, e.g. Meltdown and Spectre. Microarchitectural attacks exploit the effects of microarchitectural components or optimizations in order to leak data to an attacker. These attacks have caused processor manufacturers to introduce performance impacting mitigations in both software and silicon.

To investigate the performance impact of the various mitigations, a test suite of forty-seven different tests was ...


Atmospheric Water Harvesting: An Experimental Study Of Viability And The Influence Of Surface Geometry, Orientation, And Drainage, Carson T. Hand Jun 2019

Atmospheric Water Harvesting: An Experimental Study Of Viability And The Influence Of Surface Geometry, Orientation, And Drainage, Carson T. Hand

Master's Theses and Project Reports

Fresh water collection techniques have gained significant attention due to global dwindling of fresh water resources and recent scares such as the 2011-2017 California drought. This project explores the economic viability of actively harvesting water from fog, and techniques to maximize water collection. Vapor compression and thermoelectric cooling based dehumidifier prototypes are tested in a series of experiments to assess water collection capability in foggy environments, and what parameters can increase that capability. This testing shows an approximate maximum collection rate of 1.25 L/kWh for the vapor compression prototype, and 0.32 L/kWh for the thermoelectric cooling ...


Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman

Master's Theses and Project Reports

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that ...


Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm Jun 2019

Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm

Master's Theses and Project Reports

Machine learning has been gaining popularity over the past few decades as computers have become more advanced. On a fundamental level, machine learning consists of the use of computerized statistical methods to analyze data and discover trends that may not have been obvious or otherwise observable previously. These trends can then be used to make predictions on new data and explore entirely new design spaces. Methods vary from simple linear regression to highly complex neural networks, but the end goal is similar. The application of these methods to material property prediction and new material discovery has been of high interest ...


Atomic Oxygen Effects On Particulate Contamination And Short Beam Strength Of Carbon Composites, Marlee K. Litzinger Jun 2019

Atomic Oxygen Effects On Particulate Contamination And Short Beam Strength Of Carbon Composites, Marlee K. Litzinger

Master's Theses and Project Reports

In order to design a successful space system, the unique challenges of the space environment it will operate in must be considered during the design process. Atomic oxygen (AO) is a detrimental environmental effect found in Low Earth Orbit (LEO) that affects spacecraft surfaces by oxidizing and eroding material over time, particularly polymers. Carbon fiber/epoxy composites are a commonly used spacecraft material affected by AO exposure. Carbon composites are used as a structural material, such as on solar panels; their large surface area therefore is a potential contamination source to sensitive components. The Space Environments and Testing Lab at ...


Analysis Of The Effects Of Adaptive Ramp Metering On Measures Of Efficiency With A Proposed Framework For Safety Evaluation, Jacky Loh Jun 2019

Analysis Of The Effects Of Adaptive Ramp Metering On Measures Of Efficiency With A Proposed Framework For Safety Evaluation, Jacky Loh

Master's Theses and Project Reports

Adaptive ramp metering (ARM) is a widely popular intelligent transportation system (ITS) tool that boasts the ability to reduce congestion and streamline traffic flow during peak hour periods while maintaining a lower implementation cost than traditional methods such as freeway widening. This thesis explores the effectiveness of ARM implementation on an 18 mile segment of the Interstate 80 (I-80) corridor in the Bay Area residing in northern California. Smaller segments of this particular segment were analyzed to determine the effective length of ARM on efficiency at various lengths originating from a known bottleneck location. Efficiency values were also compared against ...


Effects Of Corrugations On Stiffness Properties Of Composite Beams For Structural Applications, Jane Xiao Jun 2019

Effects Of Corrugations On Stiffness Properties Of Composite Beams For Structural Applications, Jane Xiao

Master's Theses and Project Reports

Composites have high strength-to-weight ratios, which is particularly desired for applications with weight restrictions. Common composite materials such as carbon fiber reinforced plastic (CF) and fiber glass reinforced plastic (FG) were used in this research. While composite materials possess high stiffness and strength properties, the stiffness of composite laminates may be maximized by changing the geometry. By adding corrugations, the flexural stiffness is increased in one direction compared to the stiffness of a flat part with the same amount of material. Thus, stiffness increases without a change in weight. The primary goal of this research was to investigate the stiffness ...