Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Master's Theses

Power electronics

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Design And Construction Of 1800w Modular Multiple Input Single Output Non-Isolated Dc-Dc Converters, Angelo Miguel Asuncion Gallardo Jun 2017

Design And Construction Of 1800w Modular Multiple Input Single Output Non-Isolated Dc-Dc Converters, Angelo Miguel Asuncion Gallardo

Master's Theses

This thesis report details the design and construction of non-isolated DC-DC converters to create a Multiple Input Single Output (MISO) converter for combining multiple renewable energy sources into one single output. This MISO uses the four-switch buck-boost topology to output a single 48V from multiple nominal 24V inputs. The MISO converter implements a modular approach to deliver 1800W output power. Each module in the MISO is rated at 600W and they share the output power equally. Hardware results show that the converter produces 1800W of output power from three sources with 96.4% efficiency. Each module also demonstrates equal sharing feature …


A Low-Cost Loop Measurement Tool For Dc-Dc Converters, Shouee B. Lin Feb 2015

A Low-Cost Loop Measurement Tool For Dc-Dc Converters, Shouee B. Lin

Master's Theses

Loop measurements are very important in evaluating dynamic performance of DC-DC converters. In this thesis, a small loop measurement tool as a low-cost alternative to a network analyzer is proposed. The tool is particularly useful when a network analyzer is not always available for use, for example when engineers are working on-site with customers or when a network analyzer is not affordable due to their relatively high cost. The design, simulation, and hardware implementation of the inexpensive loop measurement tool will be presented in this thesis. Results from computer simulation and hardware prototype demonstrate the ability of the proposed tool …


Digitally Controlled, Modular Electronic Load, Jason L. March Dec 2011

Digitally Controlled, Modular Electronic Load, Jason L. March

Master's Theses

This project entails the design and development of a digitally controlled, modular electronic load. The proposed load is unique from existing designs because it has the added ability to increase its maximum current level by adding identical modules in parallel. Each module is designed to sink a maximum of 5A at 60V but more modules allow for more current. The cost and simplicity of the design are considered such that it can be reproduced in-house to replace, whenever possible, the resistor box for load testing of any analog circuits but more specifically power electronic circuits.

The design process as well …