Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 65

Full-Text Articles in Engineering

Surface Chemical Properties Of Mo2C, W2C, Mo2N And W2N Probed With Co, Co2And O2 Adsorption: A Dft Analysis, Jingyun Ye, Tianyu Zhang, Lingyun Xu, Shuxia Yin, Krishanthi Weerasinghe, Pamela Ubaldo, Ping And Ge Qingfeng He Aug 2017

Surface Chemical Properties Of Mo2C, W2C, Mo2N And W2N Probed With Co, Co2And O2 Adsorption: A Dft Analysis, Jingyun Ye, Tianyu Zhang, Lingyun Xu, Shuxia Yin, Krishanthi Weerasinghe, Pamela Ubaldo, Ping And Ge Qingfeng He

Journal of Electrochemistry

Transition metal carbides and nitrides are attractive materials for electrodes in many electrochemical energy storage and conversion applications. In the present study, we use density functional theory slab calculations to characterize the surface chemical properties of molybdenum (Mo) and tungsten (W) carbides and nitrides, namely, Mo2C, W2C, Mo2N and W2N with the adsorption of CO, CO2 and O2. These probing molecules provide measures of in both acidity/basicity and redox property of for the surfaces of these carbides and nitrides. Our results show that Lewis basic sites were responsible for CO2 …


Electrochemical Deposition Of Cr From Cr3+ In The Mixed Electrolyte Of [Bmim]Oac/H2O, Wei Luo, Dong-Fang Niu, Rong-Bin Du, Jun-Wei Wang, Zhu-Qing Wang, Heng Xu, Xin-Sheng Zhang Jun 2017

Electrochemical Deposition Of Cr From Cr3+ In The Mixed Electrolyte Of [Bmim]Oac/H2O, Wei Luo, Dong-Fang Niu, Rong-Bin Du, Jun-Wei Wang, Zhu-Qing Wang, Heng Xu, Xin-Sheng Zhang

Journal of Electrochemistry

The electrochemical reduction of trivalent chromium ion (Cr3+) to Cr in 1-butyl-3-methylimidazolium acetate ([BMIM]OAc)-H2O mixed electrolyte was investigated. The cyclic voltammograms showed that the electroreduction of Cr3+ in the mixed electrolyte occurred in a two-step process, namely, Cr3+ + e → Cr2+ and Cr2+ + 2e→ Cr0, controlled by the diffusion of Cr3+ to the electrode. The diffusion coefficient of Cr3+ was 1.2×10-8 cm2/s at 40 ℃ obtained by Rendle-Sevcik equation. The chronoamperomograms of the Cr3+ electrodeposition confirmed the three-dimensional instantaneous nucleation mechanism of …


Selective Direct Electro-Oxidation Of C-H Bond, Yan-Mei Liao, Qian-Qian Wu, An-Lun Zhang, Ying-Hong Zhu, Chun-An Ma Jun 2017

Selective Direct Electro-Oxidation Of C-H Bond, Yan-Mei Liao, Qian-Qian Wu, An-Lun Zhang, Ying-Hong Zhu, Chun-An Ma

Journal of Electrochemistry

Carbon-hydrogen (C-H) bond is the most basic chemical bond in organic compounds. The activation and direct conversion of C-H bond are the effective methodology for synthesis of different kinds of organic compounds from alkane compounds. The oxidative activation and functionalization of C-H bonds constitute an important and challenging area of investigation. The electro-oxidative activation of C-H bonds to form new C-O, C-C and C-N bonds has proven to be interesting and important in organic chemistry using the clean electron as the oxidant. The target C-O, C-C and C-N compounds could be selectively achieved by choosing the appropriate electrode, supporting electrolyte …


Preparations And Characterizations Of Ti/Pbo2 Electrodes Modified With Rare Earth Of Praseodymium And Pvp In Electrochemical Degradation Of Organics, Mai Xu, Feng-Wu Wang, Xian Liang, Yi-Jun Wei, Wen-Yan Fang, Chuan-Gao Zhu, Yun-Hu Hun Jun 2017

Preparations And Characterizations Of Ti/Pbo2 Electrodes Modified With Rare Earth Of Praseodymium And Pvp In Electrochemical Degradation Of Organics, Mai Xu, Feng-Wu Wang, Xian Liang, Yi-Jun Wei, Wen-Yan Fang, Chuan-Gao Zhu, Yun-Hu Hun

Journal of Electrochemistry

The titanium (Ti) based lead oxide (PbO2) electrodes doped with praseodymium oxide (Pr2O3) and polyvinylpyrrolidone (PVP) were prepared by electrodeposition. The surface morphologies and structures of the as-prepared thin films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) technique, respectively. The results showed that the denser and more uniform coatings with smaller particles and larger surfaces were obtained by doping, which modified the micro-structure of the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode. Cyclic voltammetry (CV) was also used to study the electrocatalytic activity of …


Electrocarboxylation: An Effective Process For Fixation Of Co2 Into Organic Carboxylic Acids, Huan Wang, Jia-Xing Lu Jun 2017

Electrocarboxylation: An Effective Process For Fixation Of Co2 Into Organic Carboxylic Acids, Huan Wang, Jia-Xing Lu

Journal of Electrochemistry

Conversion and utilization of greenhouse gas carbon dioxide (CO2) have become more and more significant to the sustainable development of the global economy. Among them, electrocarboxylation of organic substrates is an effective process. Under mild conditions such as ambient temperature and pressure, carbocations generated by electroreduction of organic substrates can react with CO2 into corresponding carboxylic acids. This paper introduces the recent progress of our group in electrochemical carboxylation, including electrocarboxylation of varies active organic substrates and asymmetric electrocarboxylation.


Wastewater Treatment Process Based On Microbial Electrochemistry: Opportunities And Challenges, Wei-Hua He, Jia Liu, Hai-Man Wang, Yu-Jie Feng Jun 2017

Wastewater Treatment Process Based On Microbial Electrochemistry: Opportunities And Challenges, Wei-Hua He, Jia Liu, Hai-Man Wang, Yu-Jie Feng

Journal of Electrochemistry

Microbial electrochemical technology (MET) has drawn great attention for its characteristics of synergetic pollution removal and energy recovery of wastewater. In the last decade, significant developments in microbial electrochemical system (MES) have been made in the aspects of electron transfer mechanism, microbial community analysis, function expansion, low-cost electrode materials and scaled-up constructions. However, the feasibility of MET as a wastewater treatment process has been controversial so far. In this paper, the characteristics of MET were systematically compared with anaerobic and aerobic processes from the application point of view in the aspects of pollution degradation and energy recovery processes. The MET-based …


Electrochemical Synthesis Of Homoallylic Alcohols And Homoallylic Amines, Wei-Qiang Zhong, Xiang-Hui Liang, Jing-Mei Huang Jun 2017

Electrochemical Synthesis Of Homoallylic Alcohols And Homoallylic Amines, Wei-Qiang Zhong, Xiang-Hui Liang, Jing-Mei Huang

Journal of Electrochemistry

Electrochemical technique has been widely applied in the organic synthesis. This review focuses on the electrochemical synthesis of homoallylic alcohols and homoallylic amines from the allylation of carbonyl compounds and imines. This method has been developed impressively, especially in the field of electrochemical allylation in a green solvent of aqueous media. Improvement of the efficiency of the electricity, regio-selectivity and chiral synthesis are expected.


Characteristics And Mechanism For The Simons Electrochemical Fluorination Of Methanesulfonyl Fluoride, Wen-Lin Xu, Bao-Tong Li, Da-Wei Wang, Ya-Qiong Wang Jun 2017

Characteristics And Mechanism For The Simons Electrochemical Fluorination Of Methanesulfonyl Fluoride, Wen-Lin Xu, Bao-Tong Li, Da-Wei Wang, Ya-Qiong Wang

Journal of Electrochemistry

The characteristics and mechanism for the Simons electrochemical fluorination processes were investigated during the electrochemical fluorination of CH3SO2F to CF3SO2F. The results showed that the reaction mechanism for the electrochemical fluorination of organic compounds to organic fluorides was the same as that of chemical fluorination processes using fluorinating agents such as CoF3. The electrochemical fluorination in anhydrous HF was a heterogeneous process, and nickel fluorides on the surface of the nickel anode played the role of a mediator in the Simons process to transfer oxidation potential from the anode to …


Ionic Liquid-Supported Tempo/Polymeric Ionic-Liquid/Carbon Black Ternary Composites: Preparations And Applications In Electrochemical Oxidation Of Alcohols, Xin Lin, Cao-Cao Sun, Zhi-Rong Liu, Cheng-Chu Zeng Jun 2017

Ionic Liquid-Supported Tempo/Polymeric Ionic-Liquid/Carbon Black Ternary Composites: Preparations And Applications In Electrochemical Oxidation Of Alcohols, Xin Lin, Cao-Cao Sun, Zhi-Rong Liu, Cheng-Chu Zeng

Journal of Electrochemistry

To effectively recover redox catalyst and supporting electrolyte, a novel ternary composite consisting of ionic liquid-supported TEMPO, polymeric ionic-liquid and carbon black was prepared. The ionic-liquid supported redox catalyst TEMPO-IL-BF4 was firstly synthesized from 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, and followed by the reaction of polydimethyldiallylammonium chloride (PDDA) and bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) to form poly[diallyldimethylammonium bis(trifluoromethanesulfonyl)imide] (PDDA(Tf2N)). A combination of the above mentioned two synthesized materials and carbon black afforded to obtain the ternary composite, which was used as the recoverable supporting electrolyte and mediator for the electrochemical oxidation of alcohol. The results indicate that various alcohols could be oxidized …


Preparations And Applications Of Irsnox Electrode In Electrochemical Synthesis Of 2,5-Dichlorophenol, Xiang-Yu Ma, Xu-Guo Tu, Rui-Nan He, Ya Chen, Gui-Sheng Zhu, Shou-Yan Shao, Song Chen Jun 2017

Preparations And Applications Of Irsnox Electrode In Electrochemical Synthesis Of 2,5-Dichlorophenol, Xiang-Yu Ma, Xu-Guo Tu, Rui-Nan He, Ya Chen, Gui-Sheng Zhu, Shou-Yan Shao, Song Chen

Journal of Electrochemistry

The electrodes of titanium based iridium tin oxides (IrSnOx) have been prepared by traditional thermal decomposition method and further applied to the electrosynthsis of 2,5-dichlorophenol in order to explore a green and high efficient synthesis route. The results showed that the electrode surface existed apparent cracks, while the intermediate layer prepared with Sn:Sb=94:6 existed less cracks and longer life time. The main products of the electrolytic reaction were 2,5-dichlorophenol, p-chlorophenol, and 1,2,4-trichlorobenzene. The electrosynthsis yield of 2,5-dichlorophenol reached 57% and the selectivity of 2,5-dichlorophenol was as high as 93% by using the IrSnOx as an anode, which is obviously better …


Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen Jun 2017

Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen

Journal of Electrochemistry

The tin dioxide (SnO2) nanoparticles were synthesized by using a simple hydrothermal route in the presence of tetrapropyl ammonium bromide (TPAB) as a surfactant. Accordingly, the titanium mesh based SnO2 catalyst electrode was prepared. The morphologies and structures of SnO2 nanostructures were characterized by scanning electron microscopy and X-ray diffraction spectrometry. The influences of reactant concentration, reaction temperature and time on the morphology of the products were investigated in detail. The electrocatalytic performance of SnO2 for the reduction of nitrobenzene with zinc was studied. Possible formation process and growth mechanism for such hierarchical SnO2 …


Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou Apr 2017

Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou

Journal of Electrochemistry

Alloying Pt with the first row non-noble transition metals has been demonstrated to increase the catalytic activity toward oxygen reduction reaction (ORR), which is the cathode reaction of the proton exchange membrane fuel cells (PEMFCs) and metal-air batteries. However, how much the ORR activity improvement comes from the alloying elements remains controversial. In this paper, the nanocubes of PtMn, PtFe, PtCo, and PtNi with the similar size and composition were prepared and their ORR activities were explored, in order to investigate the effects of alloying elements on the catalytic activity. The use of cubic shape particles minimizes the contribution to …


Designing Pt-Skin Of Pt-Based Bimetallic Electrocatalysts For Oxygen Reduction Reaction, Binwei Zhang, Yunxiao Wang, Yanfei Xu, Huakun Liu, Shixue Dou Apr 2017

Designing Pt-Skin Of Pt-Based Bimetallic Electrocatalysts For Oxygen Reduction Reaction, Binwei Zhang, Yunxiao Wang, Yanfei Xu, Huakun Liu, Shixue Dou

Journal of Electrochemistry

In the past decade, great advancement has been made in the development of nanocatalysts for energy conversion and storage. Pt-skin of Pt-based bimetallic has shown a great potential in the tuning the electronic structures of electrocatalytically active materials toward oxygen reduction reaction. Here, we offer a brief overview of the recent research on the design and preparation of catalysts. Our focus is paid on the systematic studies of preparation and performance of Pt-skin catalysts towards oxygen reduction reaction.


Comparative Studies Of Fe, Ni, Co And Their Bimetallic Nanoparticles For Electrochemical Water Oxidation, Maduraiveeran Govindhan, Brennan Mao, Aicheng Chen Apr 2017

Comparative Studies Of Fe, Ni, Co And Their Bimetallic Nanoparticles For Electrochemical Water Oxidation, Maduraiveeran Govindhan, Brennan Mao, Aicheng Chen

Journal of Electrochemistry

The design of efficient, durable, and earth-abundant electrocatalysts via environmentally compatible strategies for the oxygen evolution reaction (OER) is a vital for energy conversion processes. Herein we report a facile approach for the fabrication of low-cost and earth abundant metal catalysts, including iron (Fe), nickel (Ni), cobalt (Co), CoNi, and CoFe nanoparticles (NPs) on titanium (Ti) substrates through a one-step electrochemical deposition. Field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) spectrocopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were employed to characterize these nanoparticles. Our electrochemical results revealed that among the five synthesized nanomaterials, the …


Impact Of Nafion Loading And Anion Adsorption On The Synthesis Of Pt Monolayer Core-Shell Catalysts, Lijun Yang, Dustin Banham, Elod Gyenge, Siyu Ye Apr 2017

Impact Of Nafion Loading And Anion Adsorption On The Synthesis Of Pt Monolayer Core-Shell Catalysts, Lijun Yang, Dustin Banham, Elod Gyenge, Siyu Ye

Journal of Electrochemistry

Carbon supported palladium (Pd) nanoparticles were used as a model core material for the synthesis of platinum (Pt) monolayer core-shell catalysts using rotating disk electrode method and a copper (Cu) under potential deposition technique. The impact of Nafion on the synthesis process was revealed by electrochemical testing with various Nafion contents. The existence of Nafion influenced the Cu under potential deposition, galvanic replacement and eventually the oxygen reduction reaction activity of the core-shell catalyst. However, as long as the Nafion content was less than 5 wt% in the test film, adding Nafion could help to bind catalyst onto the surface …


Resistive-Pulse Analysis Of Single Phospholipid Vesicles Using Quartz Nanochannels, T. Cox Jonathan, Zhang Bo Apr 2017

Resistive-Pulse Analysis Of Single Phospholipid Vesicles Using Quartz Nanochannels, T. Cox Jonathan, Zhang Bo

Journal of Electrochemistry

We report the uses of resistive-pulse method and quartz nanochannels for the detection and size analysis of single vesicles. Cylindrical shape quartz nanochannels have been used to detect single phospholipid vesicles ranging from 100 to 300 nm and polystyrene nanoparticles ranging from 170 to 400 nm in diameter. Translocations of single vesicles and nanoparticle were detected as individual square current pulses, which could be used to determine particle size. Our results show excellent agreement between the particle/vesicle sizes obtained from nanochannels and those from dynamic light scattering (DLS) and scanning electron microscopy (SEM). This electronic-based method was found to be …


Novel Composites Between Nano-Structured Nickel Sulfides And Three-Dimensional Graphene For High Performance Supercapacitors, Xiaomin Wang, Huanglin Dou, Zhen Tian, Jiujun Zhang Apr 2017

Novel Composites Between Nano-Structured Nickel Sulfides And Three-Dimensional Graphene For High Performance Supercapacitors, Xiaomin Wang, Huanglin Dou, Zhen Tian, Jiujun Zhang

Journal of Electrochemistry

In this paper, a three-dimensional graphene (3DG) network grown on nickel foam was employed as a template for synthesizing graphene-based composite materials of supercapacitor electrode. The composites (crystal Ni3S2 nanorods on the surface of 3DG (abbreviated as Ni3S2/3DG)) were obtained through a one-step hydrothermal reaction. The morphological and structural evolution of the Ni3S2/3DG composites were investigated by SEM, TEM, XRD and Raman spectroscopy. Detailed electrochemical characterization showed that the Ni3S2/3DG-coated electrodes exhibited both a specific capacitance as high as 1825 F·g-1 at 5 mV·s …


Rutile Tio2 Nanosheet Arrays Planted On Magnetron Sputtered Ti Metal Layers For Efficient Perovskite Solar Cells, Nang Zhang, Meidan Ye, Xiaoru Wen, Changjian Lin Apr 2017

Rutile Tio2 Nanosheet Arrays Planted On Magnetron Sputtered Ti Metal Layers For Efficient Perovskite Solar Cells, Nang Zhang, Meidan Ye, Xiaoru Wen, Changjian Lin

Journal of Electrochemistry

In this work, vertical rutile titanium oxide (TiO2) nanosheet arrays (NSAs) were firstly hydrothermally grown on the top of thin titanium (Ti) metal layers which were loaded on fluorine doped tin oxide (FTO) substrates by the DF magnetron sputtering deposition method. After an annealing post-treatment, the Ti metal layers were transformed into the compact TiO2 layers with a strong connection between the rutile TiO2 NSAs and the FTO substrates. For comparison, the rutile TiO2 NSAs were similarly planted over two compact TiO2 layers fabricated through atomic layer deposition (ALD) and spin coating (SC) methods, …


Electrodeposition Of Ruo2 Layers On Tio2 Nanotube Array Toward Co2 Electroreduction, Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai Apr 2017

Electrodeposition Of Ruo2 Layers On Tio2 Nanotube Array Toward Co2 Electroreduction, Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai

Journal of Electrochemistry

RuO2/TiO2 composite materials have multitude of electrocatalytic applications including but not limited to CO2 reduction reaction (CO2RR). RuO2/TiO2 electrodes were previously prepared by repetitive coating and thermal decomposition (TD) of a Ru(III) precursor solution on Ti substrate. In this work, electrochemical potential cycling is applied to deposit amorphous RuO2 (α-RuO2) layers onto TiO2 nanotube array (TNA) (RuO2CV/TNA) preformed on Ti foil. SEM, GIXRD, and voltammetry are applied to characterize the structures of the resulting RuO2CV/TNA. Ru loading on the RuO2 …


Recent Progress In Template-Assisted Synthesis Of Nitrogen-Doped Porous Carbons For Oxygen Electroreduction, Niu Wenhan, Li Ligui, Shaowei Chen And Apr 2017

Recent Progress In Template-Assisted Synthesis Of Nitrogen-Doped Porous Carbons For Oxygen Electroreduction, Niu Wenhan, Li Ligui, Shaowei Chen And

Journal of Electrochemistry

Nitrogen (N)-doped porous carbons are potential alternatives to precious metal catalysts for oxygen reduction reaction (ORR) at the cathodes of proton exchange membrane fuel cells and metal-air batteries. Template-assisted synthesis has been used extensively as a robust and versatile method in the preparation of such carbon catalysts, where the ORR activity has been found to be dependent on various structural parameters, such as the concentrations and molecular configurations of the dopants, and the porosity, surface accessibility and electrical conductivity of the carbon materials. In this review, we summarize recent progress in this area of research focusing on the design, preparation …


Reconstruction Of Distributions Of Nanoparticles Or Electroactive Nano-Components In Electrochemical Arrays Based On Chronoamperometric Data, Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore Apr 2017

Reconstruction Of Distributions Of Nanoparticles Or Electroactive Nano-Components In Electrochemical Arrays Based On Chronoamperometric Data, Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore

Journal of Electrochemistry

The main scope of this work was to elaborate and test a simple mathematical and numerical procedure for reconstructing the probability density distributions f(ρ) characterizing the distribution of electroactive or electrocatalytic nano-components present or deposited on the electrochemically-inert surface of a planar conductor based on the time-dependent chronoamperometric responses of the corresponding electrochemical array. The mathematical and numerical validity of the procedure was established for three types of arrays (one periodical, two involving random dispersions) involving near-spherical nano-components dispersed on a flat surface. Indeed, altogether, these three types represent most 2D-experimental electrochemical nano-arrays used for analytical or electrocatalytic purposes. This …


Application Of Composite Ionic Liquid In Electro-Oxidation Activation Of A C-H Bond, Zi-Ying Chen, Qian-Qian Wu, Jian-Qing Zhang, Ying-Hong Zhu, Chun-An Ma Feb 2017

Application Of Composite Ionic Liquid In Electro-Oxidation Activation Of A C-H Bond, Zi-Ying Chen, Qian-Qian Wu, Jian-Qing Zhang, Ying-Hong Zhu, Chun-An Ma

Journal of Electrochemistry

In this paper, the ionic liquid/carbon nanotube composite material was prepared through modifying the ionic liquid 1-ethyl-3-methylimidazolium acetate to multi-walled carbon nanotubes. The electro-oxidation properties of p-methoxy toluene (p-MT) were studied using the composite as an electrolyte. The effects of scanning speed, temperature and substrate concentration were studied by cyclic voltammetry and chronoamperometry. The electrochemical kinetics of p-MT in this system was also studied. The results showed that the electrochemical oxidation of p-MT in the composite electrolyte solution was irreversible. The process was mainly controlled by diffusion, and the diffusion coefficient (D) was 7.69×10-10 cm2.s-1. Increasing the reaction temperature and …


Electrochemical Nucleation Of Invar Alloy On Glassy Carbon Electrode, Xian-Jie Huang, Hui Yan, Shuai-Shuai Huang, Fang-Zu Yang, Zhong-Qun Tian, Shao-Min Zhou Feb 2017

Electrochemical Nucleation Of Invar Alloy On Glassy Carbon Electrode, Xian-Jie Huang, Hui Yan, Shuai-Shuai Huang, Fang-Zu Yang, Zhong-Qun Tian, Shao-Min Zhou

Journal of Electrochemistry

Abstract: The linear sweep voltammetry, cyclic voltammetry and potential step methods were used to study the electrodeposition mechanism of Invar nickel-iron alloy (the mass fraction of nickel was 32~36%) on glassy carbon electrode surface in the weak acidic bath. The results demonstrate that the electrodeposition is was a diffusion controlled irreversible electrode process in this system. The Scharifker-Hill (SH) theory theoritic model (SH) were was used employed to fitting the experimental data and the result shows that the codeposition of Invar alloy on glassy carbon electrode surface conformed to the diffusion controlled three-dimensional instantaneous nucleation mechanism. The kinetic parameters were …


Sn-Doped Α-Fe2O3 Photocatalyst Containing Oxygen Vacancy For Water-Splitting, Zu-Hua Wang, Dong-Fang Niu, Hui-Cheng Li, Rong-Bin Du, Heng Xu, Xin-Sheng Zhang Feb 2017

Sn-Doped Α-Fe2O3 Photocatalyst Containing Oxygen Vacancy For Water-Splitting, Zu-Hua Wang, Dong-Fang Niu, Hui-Cheng Li, Rong-Bin Du, Heng Xu, Xin-Sheng Zhang

Journal of Electrochemistry

The α-Fe2O3 nanoparticles containing oxygen vacancies were synthesized in atmospheric N2 by dip-dropping method without a high vacuum employed before annealing. The influences of annealing atmosphere and Sn-doping on the photocatalytic performance of α-Fe2O3 nanoparticles were studied by annealing the photocatalyst in N2 or air and adding SnCl4 to the precursor directly. The results showed that the current density of Sn-doping α-Fe2O3 annealed in N2 at 550 °C and 1.23 V (vs. RHE) was 35 times greater than that of pristine α-Fe2 …


Electrochemical Synthesis Of Porous Polyaniline Electrodes Using Hkust-1 As A Template And Their Electrochemical Supercapacitor Property, Qiong Luan, Chun-Feng Xue, Hong-Ye Zhu, Fu-Juan Yang, Xu-Li Ma, Xiao-Gang Hao Feb 2017

Electrochemical Synthesis Of Porous Polyaniline Electrodes Using Hkust-1 As A Template And Their Electrochemical Supercapacitor Property, Qiong Luan, Chun-Feng Xue, Hong-Ye Zhu, Fu-Juan Yang, Xu-Li Ma, Xiao-Gang Hao

Journal of Electrochemistry

Excellent electrode plays vital important role in the performance of supercapacitors. Polyaniline (PANI) with good conductivity is often used to prepare electrode. However, its available surface is limited and results in a poor supercapacitance in many cases. It is desirable to fabricate an electrode containing electroactive PANI with high surface area deriving from its porous structure. Here, the metal-organic framework (MOF) material with high surface area was selected as a hard template for synthesizing porous PANI. Microporous PANI composite electrodes (Micro-PANI/CC) were fabricated by depositing aniline on to carbon cloth (CC) pre-coated with MOF material of HKUST-1 using a unipolar …


Preparations Of Mno2 Reference Electrodes For Corrosion Monitoring Of Reinforced Concrete, Li Yang, Bing Xu, Hai Wang, Ze-Hua Dong Feb 2017

Preparations Of Mno2 Reference Electrodes For Corrosion Monitoring Of Reinforced Concrete, Li Yang, Bing Xu, Hai Wang, Ze-Hua Dong

Journal of Electrochemistry

In this work, the solid reference electrode was assemblied by using the electrochemically synthesized manganese dioxide (MnO2) (EMD) powder, gel electrolyte and thin mortar layer for the durability evaluation of concrete. The EMD reference electrode exhibited higher potential stability (< 10 mV drift) than the chemically synthesied MnO2 (CMD) based on half year potential tests in the saturated Ca(OH)2 solution and hardened mortar. In addition, the EMD electrode was almost insensitive to the presences of chloride ion and corrosion inhibitor. Electrochemical impedance and polarization curves indicate that the EMD electrode had lower charge transfer resistance,higher exchange current density and lower temperature coefficient than the …


Direct Electrochemistry Of Glucose Oxidase Based On Ws2 Quantum Dots And Its Biosensing Application, Chen-Lu Li, Hua-Ping Peng, Zhong-Nan Huang, Yi-Lun Sheng, Pei-Wen Wu, Xin-Hua Lin Feb 2017

Direct Electrochemistry Of Glucose Oxidase Based On Ws2 Quantum Dots And Its Biosensing Application, Chen-Lu Li, Hua-Ping Peng, Zhong-Nan Huang, Yi-Lun Sheng, Pei-Wen Wu, Xin-Hua Lin

Journal of Electrochemistry

In this study, a novel electrochemical glucose biosensor has been developed by immobilizing glucose oxidase (GOx) on tungsten disulfide quantum dots (WS2 QDs) on the surface of glassy carbon electrode (GCE). Transmission electron microscopy, UV-vis spectroscopy and cyclic voltammetry were employed to characterize the morphology, structure, and electrochemical behaviors of the as-prepared WS2 QDs and the biofilm modified electrode. The results suggested that the WS2 QDs could accelerate the electron transfer between the electrode and the immobilized enzyme, which enabled the direct electrochemistry of GOx without any electron mediator. Besides, the immobilized GOx in WS2 QDsfilm …


Effects Of Flame Retardant On The Rate Capability And Safety Performances Of The Soft-Package 5ah Lithium Ion Battery, Yan-Zhuo Lv, Xiao-He Wang, Yi-Ming Qin, Zhen-Bo Wang, Ke Ke Feb 2017

Effects Of Flame Retardant On The Rate Capability And Safety Performances Of The Soft-Package 5ah Lithium Ion Battery, Yan-Zhuo Lv, Xiao-He Wang, Yi-Ming Qin, Zhen-Bo Wang, Ke Ke

Journal of Electrochemistry

The 5 Ah soft packed lithium ion batteries with LiNi 0.4Co0.2Mn0.4 O2 as the positive electrode material and the organic electrolytes with different amounts of fire retardants as the electrolyte solution were prepared. The effects of the fire retardant amount (5 %,10 %,20 %) of the fire retardants on the rate performances, short-circuit characteristics and overcharged behaviors of the 5 Ah soft packed lithium ion battery were investigated by electrochemical methods. The results indicated that the best rate performances were obtained by adding 5 vol.% of the fire retardants in the electrolyte solution when the …


An Investigation In The Performance Of Lithium Sulfur Battery With A Tic Coated Separator, Jian-Hua Fang, Yong Cao, Mao-Ping Yang, Ming-Sen Zheng, Quan-Feng Dong Feb 2017

An Investigation In The Performance Of Lithium Sulfur Battery With A Tic Coated Separator, Jian-Hua Fang, Yong Cao, Mao-Ping Yang, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

To improve the specific capacity and cycle stability of lithium-sulfur (Li-S) battery, a TiC/Celgard coating separator was developed and its performance in Li-S battery was investigated. The electrochemical test results confirmed that the TiC coating layer could significantly increase the capacity and cycle stability. At a high rate of 2C, it still delivered the capacity of 650 mAh?g-1. At 0.5C, the specific capacity was maintained at 841.3 mAh?g-1 after 100 cycles.


Performance Of Piperidine Ionic Liquid Based Mixed Electrolyte In Li/Licoo2 Cell, Hu Cheng, Xiao-Yan Nie, Ye-Dan Shen Feb 2017

Performance Of Piperidine Ionic Liquid Based Mixed Electrolyte In Li/Licoo2 Cell, Hu Cheng, Xiao-Yan Nie, Ye-Dan Shen

Journal of Electrochemistry

The N-methyl-N-ethyl (propyl, butyl) piperidinium bis (trifluo romethanesulfonyl) imide (PP12(3,4)TFSI) ionic liquids were prepared, and their influences on the performances of Li/LiCoO2 cells were investigated. The electrochemical performance and thermostability of ionic liquids based mixed electrolytes were characterized by electrochemical methods and thermogravimetric analysis. The results showed that the piperidine ionic liquids could improve the thermostability of organic electrolyte, and the size of their side chain had played an important role on the electrochemical performance of Li/LiCoO2 cell. The Li/LiCoO2 cell used the electrolyte mixed with PP13TFSI exhibited the best electrochemical performance among the three ionic liquids. …