Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Dynamics And Structure Of Polyelectrolyte Complexes, Hamidreza Shojaei-Mahib Jul 2018

Dynamics And Structure Of Polyelectrolyte Complexes, Hamidreza Shojaei-Mahib

Doctoral Dissertations

Interaction of charged macromolecules among themselves and with charged interfaces in salty aqueous medium is a common phenomenon prevalent in biology and synthetic systems. We have addressed several inter-related issues in this general context. First we present a theory of adsorption of polyelectrolytes on the interior and exterior surfaces of a charged spherical vesicle. We derive the critical adsorption condition and the density profile of the polymer in terms of various characteristics of the polymer, vesicle, and the solution, such as the length and charge density of polymer, the radius and charge of the vesicle, the salt concentration of the …


Vitreous Gel Physics, Svetlana Morozova Jul 2017

Vitreous Gel Physics, Svetlana Morozova

Doctoral Dissertations

The transparent vitreous, which fills the posterior cavity of the eye, is incredibly engineered. The charged polyelectrolyte hyaluronic acid (HA) network swells to maintain the pressure in the eye, while stiff collagen type II bundles help absorb any external mechanical shock. Our investigations have contributed to a few key developments related to the physical properties of the vitreous: (1) The stiff collagen network that supports the soft gel network is self-assembled from single triple-helix collagen proteins. Electrostatic interactions drive this assembly, such that the size and concentration are optimized at physiological salt concentrations. The width of the assemblies remarkably changes …


Synthesis Of Biopolymer Materials Tailored For Biological Applications, Nathan P. Birch Mar 2017

Synthesis Of Biopolymer Materials Tailored For Biological Applications, Nathan P. Birch

Doctoral Dissertations

Biopolymers are able to address a wide variety of medical concerns from chronic wounds to stem cell cultivation to antibacterial and antifouling applications. They are non-toxic, biodegradable, and biocompatible, making them ideal candidates for creating green materials for biological applications. In this thesis, we cover the synthesis of two novel materials from the biopolymers, chitosan and pectin. Chitosan is a biocompatible antibacterial polycation and pectin is an anti-inflammatory polyanion with a strong propensity for hydrogen-bonding. The two chitosan:pectin materials, particles and hydrogels, explore some of the structures that can be created by tuning the electrostatic interactions between chitosan and pectin. …


Voltage Driven Translocation Of Polyelectrolytes Through Nanopores, Byoung-Jin Jeon Mar 2016

Voltage Driven Translocation Of Polyelectrolytes Through Nanopores, Byoung-Jin Jeon

Doctoral Dissertations

Recently, translocations of polyelectrolyte molecules through membrane channel protein pores or solid-state nanopores have been actively studied. Although the polymer translocation researches emerged mainly due to technological demands in terms of genome sequencing, the detailed physics of the single molecule transport through a narrow channel remains fully understood. To obtain further understanding of common features of the translocation process, this thesis focuses on the effects of salt concentration, pore-polymer electrostatic interactions, and externally applied electric field on the voltage-driven polymer translocations. The study is carried out by performing a series of systematically designed experiments using alpha-hemolysin (αHL) protein pore to …


Application Of Polyelectrolyte Layer-By-Layer Nano-Assembly For Surface Modification, Encapsulation And Controlled Release, Nikhil Anil Pargaonkar Oct 2005

Application Of Polyelectrolyte Layer-By-Layer Nano-Assembly For Surface Modification, Encapsulation And Controlled Release, Nikhil Anil Pargaonkar

Doctoral Dissertations

In this study, we applied the traditional Electrostatic layer-by-layer (ELBL) assembly procedure to fabricate nanothin films over flat surfaces, and modify particle surfaces to influence the drug particle size, and drug release. The ELBL assembly has previously been applied to fabricate multilayer nano-scale thin films, but its ability to instantaneously influencing particle size is unique. Other unique observations such as influence on drug release as a result of polymer complexation, and thermal changes occurring during layer fabrication are recorded.

The ELBL self-assembly process was applied to produce dexamethasone particles layered with various polyelectrolyte layer combinations. These combinations were further applied …


Modeling, Design, And Validation Of Fluorescent Spherical Enzymatic Glucose Microsensors Using Nanoengineered Polyelectrolyte Coatings, Jonathan Quincy Brown Jul 2005

Modeling, Design, And Validation Of Fluorescent Spherical Enzymatic Glucose Microsensors Using Nanoengineered Polyelectrolyte Coatings, Jonathan Quincy Brown

Doctoral Dissertations

In this dissertation, the modeling, design, and function of fluorescent spherical enzymatic microsensors for minimally-invasive diabetic monitoring are described. The devices reported herein are novel and their experimental construction and theoretical analysis have not been previously reported, thus laying the foundation for an intensive set of studies. These sensors are based on the encapsulation of an enzymatic fluorescent assay for glucose within hydrogel alginate microspheres with diameters on the order of tens of microns, which are of the appropriate size for intradermal implantation. A novel feature of these sensors is the use of multifunctional nanoengineered ultrathin multilayer polyelectrolyte coatings on …


Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel Oct 2004

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel

Doctoral Dissertations

Thin wall microcapsules were formed via Layer-by-Layer Self-Assembly of alternate adsorption of oppositely charged polyelectrolyte on microcores. After the core dissolution, empty polymeric shells with 20–25 nm thick walls were obtained. These microcapsules were loaded with Myoglobin, Hemoglobin and Glucose Oxidase by opening capsule pores at low pH and closing them at higher pH. The native structure of the enzyme was not affected due to different treatments. Biocompatible nanoshells were also prepared for encasing DNA. Using the same Layer-by-Layer Self-Assembly approach nanoparticle were constructed containing DNA as one of the layers. The nanoparticles of different architecture were used to deliver …


Biomimetic Synthesis Within Polyelectrolyte Microcapsules: Characterization Of Enzyme Catalyzed Polyphenols And Polypeptides, Rohit C. Ghan Oct 2004

Biomimetic Synthesis Within Polyelectrolyte Microcapsules: Characterization Of Enzyme Catalyzed Polyphenols And Polypeptides, Rohit C. Ghan

Doctoral Dissertations

An enzyme-catalyzed synthesis of novel polymers within layer-by-layer (LbL) constructed polyelectrolyte microcapsules has been developed. This approach is based on the selective permeability of polyelectrolyte-capsule walls to monomer molecules. Conversely biocatalysts and forming polymeric chains cannot exit the micro-capsule interior because of their characteristic high molecular weight. Horseradish Peroxidase (HRP) was encapsulated into four bilayer PSS (poly-styrenesulfonate)/PAH (poly-allylamine hydrochloride) capsules with an average diameter of 5 μm using pH-driven pore opening. The polymerization of 4-(2-Aminoethyl) phenol hydrochloride (tyramine) catalyzed by HRP produces easily detectable fluorescent polymeric products after the addition of hydrogen peroxide to the system. It is known that …