Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

The Controlled Synthesis Of Hydrogen Electrocatalysts For Alkaline Exchange Membrane Fuel Cell And Electrolysis Applications Via Chemical Vapor Deposition, Stefan Thurston Dubard Williams May 2021

The Controlled Synthesis Of Hydrogen Electrocatalysts For Alkaline Exchange Membrane Fuel Cell And Electrolysis Applications Via Chemical Vapor Deposition, Stefan Thurston Dubard Williams

Doctoral Dissertations

The development of catalysts for the electrochemical processes of hydrogen systems (e.g., fuel cells and electrolyzer systems) continues to be an attractive area of research for renewable energy technologies. One significant challenge has been developing hydrogen catalysts suitable for alkaline environments, mainly due to the sluggish kinetics of hydrogen reactions. In alkaline environments, the kinetics are decreased by two orders of magnitude when compared to acidic environments. Chemical vapor deposition (CVD) is a conventional method used to synthesize these types of catalysts. This effort discusses extending work being done using a modified CVD process known as “Poor Man’s” CVD (PMCVD) …


Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki Jan 2021

Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki

Doctoral Dissertations

"Lead-acid batteries are an established technology with nearly 99% recyclability; however, lead-acid batteries produce only 40% of their theoretical capacity due to poor active mass utilization and PbSO4 pore blockage, and the longevity of the batteries is hampered by secondary reactions during the cycle life such as corrosion and gassing.

Lead-acid batteries were investigated and improved through several different approaches: an alternative electrolyte to mitigate secondary reactions, graphite additives to improve positive active mass (PAM) utilization, and dispersant additives to help the industrial pasting process.

The thermodynamics and chemical reactions of a commercial electrolyte replacement called TydrolyteTM were investigated …


Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty Dec 2020

Enhanced Kinetics And Modeling Of Pan-Based Carbon Felt Anodes In Vanadium Redox Flow Batteries, Michael Cyrus Daugherty

Doctoral Dissertations

All-vanadium redox flow batteries (VRFBs) are a promising technology for grid-level energy storage, however, there are still several limitations in the forms of durability, efficiency, and overall costs, which are barriers to its commercial viability. With both bulk electrolyte flowing through its porous matrix and species flux at the solid-electrolyte interface, electrodes are the component of VRFB systems which host electrochemical reactions and facilitate contact between the liquid phase electrolyte and the electronically conductive solid phase. While the more limiting electrode in VRFB systems is dependent on the material, for polyacrylonitrile (PAN)-based carbon felts, the anode constitutes a larger portion …


Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi Jan 2020

Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi

Doctoral Dissertations

"Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency.

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR …


Design, Microfabrication And Characterization Of Concentric Gold Nanoring Electrode For Neurochemical Sensing, Haocheng Yin Aug 2019

Design, Microfabrication And Characterization Of Concentric Gold Nanoring Electrode For Neurochemical Sensing, Haocheng Yin

Doctoral Dissertations

Nanoelectrodes have become widely used in electrochemical sensing in recent decades. When compared to microelectrodes, it has many unique advantages such as high signal to noise ratio, small sample volume requirement, and lower detection limits.

This work reports on the microfabrication and characterization of a gold nanoring electrode (Au NRE) patterned on top of a silicon (Si) micropillar. An NRE of 165  10 nm in width was micropatterned on 4.6  1 µm diameter  17.5  2.5 µm long Si micropillar with an intervening 50 nm thick hafnium oxide insulating layer. Scanning electron microscopy and energy dispersive spectroscopy …


A Study Of Lignin And Lignin Models In Chemical And Electrochemical Systems, Luke Thomas Servedio May 2017

A Study Of Lignin And Lignin Models In Chemical And Electrochemical Systems, Luke Thomas Servedio

Doctoral Dissertations

The use of biomass as a viable, renewable feedstock for the production of energy and as a surrogate for the petrochemical industry has generated a tremendous amount of research over the last 40 years. With lignin comprising 25- 35% by weight of the dry mass of much of that material, much time and energy has been devoted to investigating a viable, scalable value-added proposition for the use of lignin and lignin pre-cursor materials. The bulk of lignin produced today comes as a by-product of the de-pulping process in the production of paper – most of which is used as a …


Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan Jan 2016

Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan

Doctoral Dissertations

"In this dissertation, two dimensional and three dimensional, transient CFD simulations are conducted to investigate the active pumping and mixing in microfluidics driven by Electromagnetic/Lorentz force. Shallow disk/ring cylindrical microfluidic cell and shallow cuboid microfluidic cell with electrodes deposited on the bottom surface are modelled for mixing and pumping purposes respectively. By applying voltage across specific pair of electrodes, an ionic current is established in the weak conductive liquid present in the cell. The current interacts with an externally applied magnetic field generating a Lorentz force that causes fluid motion in the cell. Velocity vectors, electric potential distributions and ionic …


Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang May 2015

Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang

Doctoral Dissertations

My research focuses on catalysis of oxygen reduction reaction (ORR) by a series of Cu(II) [copper with positive two valence] -1,2,4-triazole complex-based electrocatalysts at the cathode of PEMFC (polymer electrolyte membrane fuel cell), an efficient and environmental friendly energy conversion system compared to internal combustion engines in use today. The sluggish kinetics of ORR considerably limited the performance of PEMFCs. Understanding of ORR mechanism is important for developing affordable, active and durable ORR catalysts for such devices.

The first part of my work focused on improving the ORR performance of Cu(II)-1,2,4-triazole complex-based catalysts in an acidic environment by exploring synthesis …