Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Engineering

Elucidating Mechanisms Of Lipid Droplet Formation In The Fission Yeast, Schizosaccharomyces Pombe, Alexander William Meyers Dec 2015

Elucidating Mechanisms Of Lipid Droplet Formation In The Fission Yeast, Schizosaccharomyces Pombe, Alexander William Meyers

Doctoral Dissertations

Cellular function relies on the proper sequestration of fats in organelles called lipid droplets. Lipid droplet metabolism is inherently linked to many disorders including obesity, type-2 diabetes, and atherosclerosis, so further elucidation of the bio-physical phenomena governing these diseases, is crucial for their respective treatments.

Once widely regarded as inert, these neutral lipid storage depots are highly dynamic and are increasingly shown to affect a wide array of biological processes. Droplet formation requires the accumulation of neutral lipids and related factors at specific cellular domains, however because this occurs at nanometer length-scales, details are lacking. Here, we try to provide …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …


Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou Dec 2015

Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou

Doctoral Dissertations

This doctoral dissertation introduces the research in the computational modeling and simulation for the microbial fuel cell (MFC) system which is a bio-electrochemical system that drives a current by using bacteria and mimicking bacterial interactions found in nature. The numerical methods, research approaches and simulation comparison with the experiments in the microbial fuel cells are described; the analysis and evaluation for the model methods and results that I have achieved are presented in this dissertation.

The development of the renewable energy has been a hot topic, and scientists have been focusing on the microbial fuel cell, which is an environmentally-friendly …


Multi-Scale Characterization And Engineering Of Taxus Suspension Cultures, Sarah A. Wilson Nov 2015

Multi-Scale Characterization And Engineering Of Taxus Suspension Cultures, Sarah A. Wilson

Doctoral Dissertations

Plants produce a diversity of natural products that have commercial applications as flavorings, fragrances, pesticides and pharmaceuticals. These compounds are often the result of specialized metabolic pathways that are unique to plant systems, and have complex structures that make chemical synthesis routes infeasible. This necessitates exploitation of biological production routes. This thesis work presents a multi-scale characterization and engineering approach to understand and manipulate plant cell cultures on the extracellular (culture) and intracellular (metabolic pathway) levels. Studies focus on the commercially relevant suspension culture system Taxus, a medicinal plant species used for production of the FDA-approved anticancer drug paclitaxel. …


Modeling The Self-Assembly Of Ordered Nanoporous Materials, Szu-Chia Chien Nov 2015

Modeling The Self-Assembly Of Ordered Nanoporous Materials, Szu-Chia Chien

Doctoral Dissertations

Porous materials are of great importance in many fields due to their wide applications. An ongoing theme in this area is the tailoring of materials for specific applications. With a better understanding of the formation mechanisms, tailoring and controlling the pore structure may be achieved. The objective of this research is acquiring further understanding of the fundamental physics that govern the formation of these materials using molecular simulations. We are aiming to unravel the assembly process of silica porous materials using a semi-rigid silica tetrahedral model. This model together with reaction ensemble Monte Carlo simulations allows us to study the …


Investigation Of Hydration Induced Structural Rearrangements Of Poly(Lactic Acid), Omkar Vidyadhar Vyavahare Aug 2015

Investigation Of Hydration Induced Structural Rearrangements Of Poly(Lactic Acid), Omkar Vidyadhar Vyavahare

Doctoral Dissertations

A comprehensive analysis of microstructural changes associated with hydration of Poly(lactic acid) (PLA) and their effect on the macroscopic properties has been provided. Although water absorbed in PLA is extremely small (~0.5% by weight or 1 water molecule per 30 PLA monomer units), we found significant increase in the kinetics of physical aging and crystallization in the presence of water. The fact that water has such a strong effect on PLA structure is attributed to the polar nature of water, strong intermolecular interactions present in PLA and their changes in the hydrated state. Using vibrational spectroscopy, features associated with bound …


Synthesis And Biological Applications Of Heavy-Metal-Free Semiconductor Nanocrystals, Ying Qi Aug 2015

Synthesis And Biological Applications Of Heavy-Metal-Free Semiconductor Nanocrystals, Ying Qi

Doctoral Dissertations

Semiconductor nanocrystals, also called quantum dots (QDs), are an interesting class of materials exhibiting size-tunable optical properties. QDs are attractive for a variety of applications, such as biological sensing and imaging, high color definition display technologies, and photovoltaics. The most widely studied QDs are compound semiconductors of the type CdX and PbX (with X= S, Se, and Te). The absorption and fluorescence emission wavelengths of these QDs span the visible and near infrared (NIR) regions of the electromagnetic spectrum. However, the highly toxic heavy metals Cd and Pb contained in these materials are problematic for their widespread use in commercial …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae Aug 2015

Assembly And Deformation Of Amphiphilic Copolymers And Networks At Fluid Interfaces, Jinhye Bae

Doctoral Dissertations

Surface tension generally plays a negligible role on macroscopic scales, but it is often the dominant force on nanometer to micrometer length-scales. The efforts of this dissertation are mainly focused on understanding the role that surface tension plays on sub-millimeter scale objects, especially on soft material systems, and how to utilize this phenomenon to assemble and deform objects. This dissertation addresses several phenomena of nano-and micron-sized objects at fluid interfaces. For nano-scale objects, amphiphilic block copolymer chains were used to explore interfacial behaviors due to their enhanced stability, mechanical properties, and tunability compared to other interfacially active materials such as …


A Study Of Diblock Copolymer/Charged Particle Nanoporous Membranes; Morphology, Design And Transport Property Modeling, Bo Zhang Aug 2015

A Study Of Diblock Copolymer/Charged Particle Nanoporous Membranes; Morphology, Design And Transport Property Modeling, Bo Zhang

Doctoral Dissertations

A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a neutral or charged nanoparticle attached either between the two blocks or at the end of copolymer. Particle size was varied between one and four tenths of the radius of gyration of the copolymer. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the molecular-level self-assembly processes with the aim of determining the appropriate morphologies used as nanoporous membranes, (i.e. the periodic, hexagonal arrays of cylinders wherein the particles would primarily be …


Vapor Synthesis And Thermal Evolution Of Supportless, Metal Nanotubes And Application As Electrocatalysts, Robert William Atkinson Aug 2015

Vapor Synthesis And Thermal Evolution Of Supportless, Metal Nanotubes And Application As Electrocatalysts, Robert William Atkinson

Doctoral Dissertations

One of the major limitations of proton exchange membrane fuel cells (PEMFCs) is the high cost and poor durability of the currently preferred catalyst design, small Pt nanoparticles supported on high surface area carbon (Pt/C). Unsupported, high-aspect ratio nanostructured catalysts, or extended surface catalysts, are a promising paradigm as electrocatalysts for a number of electrochemical reactions. These extended surface catalysts generally exhibit higher specific activities compared to their carbon-supported nanoparticle counterparts that have been ascribed to their unique electronic, surface and structural properties. Extended surface catalysts frequently maintain enhanced durability over supported catalysts during fuel cell operation because they are …


Diamond Mems Biosensors: Development And Applications, Wenli Zhang Jul 2015

Diamond Mems Biosensors: Development And Applications, Wenli Zhang

Doctoral Dissertations

This research focuses on the development a dielectrophoresis-enhanced microfluidic impedance biosensor (DEP-e-MIB) to enable fast response, real-time, label-free, and highly sensitive sensor for bacterial detection in clinical sample. The proposed design consists of application of dielectrophoresis (DEP) across a microfluidic channel to one of the impedance spectroscopy electrodes in order to improve the existent bacterial detection limits with impedance spectroscopy. In order to realize such a design, choice of electrode material with a wide electrochemical potential window for water is very important. Conventional electrode material, such as gold, are typically insulated for the application of DEP, and they fail when …


Gold Nanoparticle Enhancements In Electroporation Mediated Dna And Rna Therapeutics, Shuyan Huang Jul 2015

Gold Nanoparticle Enhancements In Electroporation Mediated Dna And Rna Therapeutics, Shuyan Huang

Doctoral Dissertations

Nonviral gene delivery methods have been explored as the replacement of viral systems for their low toxicity and immunogenicity. However, they have yet to reach levels competitive to their viral counterparts. Electroporation figured prominently as an effective nonviral gene delivery approach for its balance on the transfection efficiency and cell viability, no restrictions of probe or cell type, and operation simplicity. The commercial electroporation systems have been widely adopted in the past two decades but still carry drawbacks associated with the high applied electric voltage, unsatisfied delivery efficiency, and/or low cell viability. What we did was to improve electroporation performance …


Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang May 2015

Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang

Doctoral Dissertations

My research focuses on catalysis of oxygen reduction reaction (ORR) by a series of Cu(II) [copper with positive two valence] -1,2,4-triazole complex-based electrocatalysts at the cathode of PEMFC (polymer electrolyte membrane fuel cell), an efficient and environmental friendly energy conversion system compared to internal combustion engines in use today. The sluggish kinetics of ORR considerably limited the performance of PEMFCs. Understanding of ORR mechanism is important for developing affordable, active and durable ORR catalysts for such devices.

The first part of my work focused on improving the ORR performance of Cu(II)-1,2,4-triazole complex-based catalysts in an acidic environment by exploring synthesis …


Nanoscale Pattern Formation From Laser Induced Thin Film Instabilities: Role Of Internal And External Effects, Sagar Prasad Yadavali May 2015

Nanoscale Pattern Formation From Laser Induced Thin Film Instabilities: Role Of Internal And External Effects, Sagar Prasad Yadavali

Doctoral Dissertations

Pulsed laser assisted pattern formation in single and bilayer metal films was investigated in this dissertation. The overall goals were: (1) to overcome limitations in conventional pulsed laser dewetting techniques, (2) to better understand the role of effects such as thermal gradients, dispersion forces, pressure gradients, and electric fields on pattern formation, and (3) to investigate nanostructure morphology and its progression in the dewetting of bilayer metal films. This study was divided into two parts. In the first part, pulsed laser-induced instabilities of single layer metal films was discussed. The spinodal dewetting of Au films, a novel Rayleigh-Taylor instability induced …


Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang May 2015

Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang

Doctoral Dissertations

This dissertation considers the development of porous carbon materials as the substrates for Al deposition/dissolution in an Al based ionic liquid flow battery (ILFB) and demonstration of an Al based hybrid supercapacitor. The Aluminum chloride/ 1-ethyl-3-methylimidazolium chloride chloroaluminate ionic liquid is utilized as the electrolyte for these Al based energy storage devices. The ILFB has less capital cost than the all-vanadium redox flow battery because of the inexpensive AlCl3. The feasibility to equip a tank of solid aluminum chloride in an ILFB system aiming to improve energy density is investigated. A critical range of temperature data (50-130 celsius …


Functional Clay Nanotubes And Composites, Yafei Zhao Apr 2015

Functional Clay Nanotubes And Composites, Yafei Zhao

Doctoral Dissertations

Tubular nanomaterials and their composites have been extensively studied in recent years in the fields of physics, chemistry, biology, and biomedicine. Carbon nanotube is the most commonly studied tubular nanomaterial; however, toxicity and high cost make it less attractive in industry and thus restricts its applications. Halloysite nanotubes, which are available in abundance in the United States as well as in other countries around the world, is a low-cost, unique and versatile aluminosilicate mineral with a chemical formula of Al4Si4O10(OH)8·nH2O. Basically, the halloysite tube diameter is around 50 nm and the length varies with different locations ranging from 0.4-1.5 μm. …


Experimental And Modeling Studies On The Formulation Of Stable Lipid Nanoparticle Dispersions, Yihui Yang Mar 2015

Experimental And Modeling Studies On The Formulation Of Stable Lipid Nanoparticle Dispersions, Yihui Yang

Doctoral Dissertations

This thesis presents both experimental and modeling studies on the formulation of stable lipid nanoparticle dispersions. A population balance equation (PBE) model was developed for prediction of the average polymorph content and aggregate size distribution to better understand the undesirable SLN aggregation behavior. Experimental and modeling studies showed that the polymorphic transformation was the rate determining step for my system, SLNs with smaller initial size distributions aggregated more rapidly, and aggregates contained particles with both alpha and beta crystals. Next the effect of different liquid carrier oils on the crystallization and aggregation behavior of tristearin NLC dispersions was investigated. I …


Bicontinuous Materials From Telechelic Macromonomers Using Thiol-Ene Chemistry, Catherine Nancy Walker Mar 2015

Bicontinuous Materials From Telechelic Macromonomers Using Thiol-Ene Chemistry, Catherine Nancy Walker

Doctoral Dissertations

Bicontinuous structures are beneficial to many applications from health and medicine to energy and the environment. Although these materials can be used for many applications, current strategies yield bicontinuous structures only under highly specific processing conditions. Development of a versatile platform to reliably obtain bicontinuous morphologies will be broadly beneficial. This work presents two platforms that can be used to produce bicontinuous morphologies using a simple Mitsunobu/thiol-ene strategy. This platform allows for the incorporation of a variety of polymer chemistries to yield well-defined polymer networks or multiblock copolymers (MBCs). It also allows for the systematic investigation of factors affecting the …


Transport Limitations In Zeolites And Biomass Pyrolysis, Andrew Robert Teixeira Mar 2015

Transport Limitations In Zeolites And Biomass Pyrolysis, Andrew Robert Teixeira

Doctoral Dissertations

Biomass pyrolysis has been widely explored for its potential to generate a sustainable chemical source capable of producing synthetic fuels and chemicals. Lignocellulosic biomass is the carbon rich, inedible fraction of wood that is comprised of long oxygenated biopolymers, primarily cellulose, hemicellulose and the highly aromatic lignin. High temperature thermal conversion of biomass to bio-oil (pyrolysis oil) occurs on the order of milliseconds and converts long chain biopolymers to a carbon-rich liquid crude. The chemistry of biomass pyrolysis is greatly complicated by significant heat and mass transport challenges. The complex fluid dynamics of the reactive liquid intermediate are examined in …


On The Ordering, Microstructure And Hole Transport Correlations In Semi-Crystalline Poly(3-Hexylthiophene), Xiaobo Shen Mar 2015

On The Ordering, Microstructure And Hole Transport Correlations In Semi-Crystalline Poly(3-Hexylthiophene), Xiaobo Shen

Doctoral Dissertations

This dissertation focuses on describing the research work done on poly(3-hexylthiophene) (P3HT), which represents one of the most important p-type semi-conducting polymers widely used in the field of organic optoelectronics. P3HT is also identified as a typical semi-crystalline material comprising different phases that would yield distinct impacts on its properties when integrated as an active component in optoelectronic devices. In particular, as the material finds great use as a hole-conductor, the objective of the dissertation is to develop a fundamental and quantitative understanding of the relationship between the semi-crystalline morphology and hole transport properties in P3HT. The first section provides …


Prediction Of Emulsion Drop Size Distributions With Population Balance Equation Models To Enable Emulsified Product Design, Shashank Maindarkar Mar 2015

Prediction Of Emulsion Drop Size Distributions With Population Balance Equation Models To Enable Emulsified Product Design, Shashank Maindarkar

Doctoral Dissertations

Oil-in-water emulsions are ubiquitous dispersed phase systems with diverse applications in consumer products, processed foods, and the pharmaceutical industry. Emulsion formulation variables and process operating conditions both impact the drop size distribution, a key property that influences emulsion rheology, stability, texture, and appearance. A typical emulsified product requires the drop size distribution to be maintained within acceptable limits. Due to a lack of quantitative understanding, emulsified products are currently manufactured by combining a broad knowledge of previous product formulations with empirical scientific experimentation. An alternative to trial-and-error experimentation is to utilize a suitable mathematical model to predict the drop size …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …


Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis Mar 2015

Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis

Doctoral Dissertations

The biophysical characteristics of cell adhesion from single protein to cell length scales have primarily been studied using purely elastic substrates. However, natural extracellular matrix (ECM) is viscoelastic and contains mobile components. In this work, we combined chemistry and cell biology tools to design and characterize laterally mobile viscoelastic polymer films that promote receptor-specific cell adhesion. Moreover, we used amphiphilic block copolymers that are end-labeled with RGD peptide ligands to allow for integrin-mediated cell adhesion. The addition of a trace hydrophobic homopolymer in the supported bilayer block-copolymer films is used to tune the lateral mobility of the films. NIH 3T3 …


Layer-By-Layer Antimicrobial N-Halamine Polymer Coatings For Food Contact Materials, Luis J. Bastarrachea Gutierrez Mar 2015

Layer-By-Layer Antimicrobial N-Halamine Polymer Coatings For Food Contact Materials, Luis J. Bastarrachea Gutierrez

Doctoral Dissertations

Cross contamination during food processing represents a risk for public health and financial burden. Surface modification of food contact materials to render them antimicrobial can be effective against such risk. The objective of the present work was to develop antimicrobial coatings with the potential to be applied in a variety of food contact materials. The polymer coatings developed became antimicrobial by incorporation of a type of chlorinated compounds called N-halamines, capable of regenerating their antimicrobial activity. Two layer-by-layer (LbL) assembly surface modification procedures were followed. In the first procedure, bilayers of branched polyethyleneimine (PEI) and poly(acrylic acid) (PAA) were applied …


Particle Gel Propagation And Blocking Behavior Through High Permeability Streaks And Fractures, Abdulmohsin Imqam Jan 2015

Particle Gel Propagation And Blocking Behavior Through High Permeability Streaks And Fractures, Abdulmohsin Imqam

Doctoral Dissertations

Water channeling, one of the primary reservoir conformance problems, is caused by reservoir heterogeneities that lead to the development of high-permeability streaks and fractures. These streaks and fractures prevent large amounts of oil from being recovered. The ultimate objective of this research was to provide comprehensive insight into designing better particle gel treatments intended for use in large openings, including open fractures, high permeability streaks, and conduits to increase oil recovery and reduce water production.

An intensive laboratory study was conducted to better understand the injection and placement mechanisms of millimeter and micron size preformed particle gels (PPGs) through thief …


Numerical And Field Data Analysis Of Drill Stem Vibration, Mohammed Fayez Al Dushaishi Jan 2015

Numerical And Field Data Analysis Of Drill Stem Vibration, Mohammed Fayez Al Dushaishi

Doctoral Dissertations

"Drill stem vibration is a major cause of premature failure of drill stem components and drilling inefficiency. In severe cases, drill stem vibration may lead to wellbore instability that could lead to increased operational cost. Drill stem vibrations are affected by design decisions and the drilling environment. Examples are; bottom hole assembly configurations, selection of operational parameters, and frequent changes in lithology. Vibration modeling, analysis of vibration data, and specialized vibration reduction tools are methods in use to prevent and mitigate severe vibrations.

A drill stem vibration model was created using nonlinear strain formulation which couples the axial, lateral and …


Analysis Of Production And Pressure Data To Characterize The Performance Of Oil And Gas Reservoirs, Abuagila Ramadan Elgmati Jan 2015

Analysis Of Production And Pressure Data To Characterize The Performance Of Oil And Gas Reservoirs, Abuagila Ramadan Elgmati

Doctoral Dissertations

"Production data analysis is an important tool for estimating important reservoir parameters. In particular, determining the average reservoir pressure (pav) and tracking its change with time is critical to analyzing and optimizing reservoir performance. The traditional method for determining pav involves pressure buildup tests. A direct method for estimating (pav) from flowing pressures and rate data is available. However, the method is for an idealized case that assumes constant production rate during pseudo steady-state (PSS) flow, which is not generally true for real wells. This research extends that approach so that it can …


Process Design, Dynamics, And Techno-Economic Analysis Of A Sustainable Coal, Wind, And Small Modular Nuclear Reactor Hybrid Energy System, Kyle Lee Buchheit Jan 2015

Process Design, Dynamics, And Techno-Economic Analysis Of A Sustainable Coal, Wind, And Small Modular Nuclear Reactor Hybrid Energy System, Kyle Lee Buchheit

Doctoral Dissertations

"The availability of cheap electricity is one of the biggest factors for improving quality of life. With the debate on the effects of carbon dioxide emissions continuing, several countries have either implemented or are considering the reduction of emissions through various economic means. The inclusion of a monetary penalty on carbon emissions would increase the prices of electricity produced by carbon-based sources. The push for large-scale renewable sources of energy has met problems with regards to energy storage and availability. The proposed coal, wind, and nuclear hybrid energy system would combine a renewable energy source, wind, with traditional and stable …


Flow Mechanisms And Numerical Simulation Of Gas Production From Shale Reservoirs, Chaohua Guo Jan 2015

Flow Mechanisms And Numerical Simulation Of Gas Production From Shale Reservoirs, Chaohua Guo

Doctoral Dissertations

"Shale gas is one kind of the unconventional resources which is becoming an ever increasing component to secure the natural gas supply in U.S. Different from conventional hydrocarbon formations, shale gas reservoirs (SGRs) present numerous challenges to modeling and understanding due to complex pore structure, ultra-low permeability, and multiple transport mechanisms.

In this study, the deviation against conventional gas flow have been detected in the lab experiments for gas flow through nano membranes. Based on the experimental results, a new apparent permeability expression is proposed with considering viscous flow, Knudsen diffusion, and slip flow. The gas flow mechanisms of gas …