Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Optimizing Speed Profiles For Sustainable Train Operation With Wayside Energy Storage Systems, Leon A. Allen May 2022

Optimizing Speed Profiles For Sustainable Train Operation With Wayside Energy Storage Systems, Leon A. Allen

Dissertations

Large hauling capability and low rolling resistance has put rail transit at the forefront of mass transportation mode sustainability in terms of congestion mitigation and energy conservation. As such, rail vehicles are one of the least energy-intensive modes of transportation and least environmentally polluting. Despite, these positives, improper driving habits and wastage of the braking energy through dissipation in braking resistors result in unnecessary consumption, extra costs to the operator and increased atmospheric greenhouse gas emissions.

This study presents an intelligent method for the optimization of the number and locations of wayside energy storage system (WESS) units that maximize the …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Energy Optimization Of A Free-Piston Enhanced Hybrid Vehicle, Kenneth Jarod Jones Jan 2014

Energy Optimization Of A Free-Piston Enhanced Hybrid Vehicle, Kenneth Jarod Jones

Dissertations

The world’s heavy dependence on vehicles which utilize hydrocarbon fuels as a primary power source has renewed the interest in electric and hybrid vehicles for industrial, commercial, and public use. The primary objective of this movement is centered on increased efficiency in energy usage for transportation. Hybrid vehicles which utilize an internal combustion engine as a linear generator, converting energy stored in hydrocarbon fuels into electrical power, could serve as a transitioning technology. The free-piston enhanced hybrid vehicle (FPHV) could potentially fill this role. The present work contains a theoretical and numerical approach to analyzing and optimizing the usage of …


Advanced Intelligent Control And Optimization For Cardiac Pacemaker Systems, Wei Shi May 2012

Advanced Intelligent Control And Optimization For Cardiac Pacemaker Systems, Wei Shi

Dissertations

Since cardiovascular diseases are major causes of morbidity and mortality in the developed countries and the number one cause of death in the United States, their accurate diagnosis and effective treatment via advanced cardiac pacemaker systems have become very important. Intelligent control and optimization of the pacemakers are significant research subjects. Serious but infrequently occurring arrhythmias are difficult to diagnose. The use of electrocardiogram (ECG) waveform only cannot exactly distinguish between deadly abnormalities and temporary arrhythmias. Thus, this work develops a new method based on frequency entrainment to analyze pole-zero characteristics of the phase error between abnormal ECG and entrained …


End-Of-Life Analysis Of Nanotechnology Products, Sun Olapiriyakul Jan 2010

End-Of-Life Analysis Of Nanotechnology Products, Sun Olapiriyakul

Dissertations

Previous research has shown that thermodynamic properties including melting point and specific heat capacity of nanomaterials may be higher than that of their corresponding bulk materials. The melting point elevation and specific heat capacity enhancement of nanomaterials may result in increased energy consumption and waste gases emission at the end-of-life (EOL) stage where the products containing nanomaterials are recycled by high temperature metal recovery (HTMR) process.

In this dissertation, the effect of physical characteristics of nanomaterials, referred to as physicochemical parameters, on their melting temperature and specific heat capacity was investigated. In addition, physical, chemical, and thermodynamic properties of nanomaterials …


Synthesis And Characterization Of Metal Oxide Semiconductors For Photoelectrochemical Hydrogen Production, Sudhakar Shet Jan 2010

Synthesis And Characterization Of Metal Oxide Semiconductors For Photoelectrochemical Hydrogen Production, Sudhakar Shet

Dissertations

The goal of this thesis is to investigate the properties of metal-oxide thin films on fluorine-doped tin oxide (FTO)-coated glass substrates, prepared by using radio- frequency (RF) reactive magnetron sputtering for photoelectrochemical (PEC) applications. Metal-oxide thin films as a photoelectrode are of special interest for PEC systems to produce hydrogen in an aqueous solution by solar energy due to their low cost and potential stability.

The following list represents some of the accomplishments and results of this work:

  • Narrowing of N-incorporated ZnO (ZnO:N) was achieved by reactive sputtering in a O2/N2 mixture ambient, and ZnO:N films with …