Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Hybrid Nanomanufacturing Process For High-Rate Polymer Nanofiber Production, Chad T. Peterson Dec 2010

Hybrid Nanomanufacturing Process For High-Rate Polymer Nanofiber Production, Chad T. Peterson

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Nanotechnology and nanomaterials have the potential to revolutionize existing and create entirely new industries. Unique physical, mechanical, chemical, and biological properties of nanomaterials have been extensively documented in the last two decades. However, most nanomaterials are discontinuous in nature, creating problems with their processing and manipulation into devices and raising health concerns. Continuous nanofibers represent an emerging class of nanomaterials with critical advantages to applications. Continuous nanofibers are readily produced by electrospinning process comprising spinning polymer solutions in high electric fields. Electrospinning is a very economic top-down nanomanufacturing process that has been used to produce ultrafine continuous nanofibers from several …


Anomalous Loss Of Toughness Of Work Toughened Polycarbonate, Shawn E. Meagher Dec 2010

Anomalous Loss Of Toughness Of Work Toughened Polycarbonate, Shawn E. Meagher

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Glassy polymers such as polycarbonate (PC) can be toughened through compressive plastic deformation. The increase in toughness is substantial, showing as much as a fifteen fold increase in the amount of dissipated energy during failure for samples compressed to 50% plastic strain. This toughness increase can be reversed through thermal aging at temperatures below the glass transition temperature (Tg = 147°C).

The combined effect of plastic compression and thermal aging has been studied using Charpy, Single Edge Notch Bending (SENB), and Compact Tension (CT) tests. The tests mapped the response of samples cut along different orientations relative to the …


Development And Characterization Of Shock Tubes For Laboratory Scale Blast Wave Simulation, Aaron D. Holmberg Dec 2010

Development And Characterization Of Shock Tubes For Laboratory Scale Blast Wave Simulation, Aaron D. Holmberg

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The prevalence of traumatic brain injury (TBI) in American soldiers exposed to a blast wave has created an urgent need to better understand the effects of blast wave insult to the head. Developing techniques that can experimentally simulate well controlled blast waves in a laboratory environment is a critical component of the research efforts towards this goal. For this work, a 4-in. cylindrical uniform shock tube and a nonuniform shock tube combining a 4-in. cylindrical gas driver with a 9-in. square driven section have been developed. The hosting laboratory, gas handling system, multichannel data acquisition systems, and the related network …


Nanomanufacturing And Analysis Of Novel Integrated Continuous Nanofibers, John E. Hannappel Nov 2010

Nanomanufacturing And Analysis Of Novel Integrated Continuous Nanofibers, John E. Hannappel

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Complex nanostructured materials have great potential for applications in many areas of nanotechnology. This potential is being unlocked by precise control of their nanoscale architecture and properties. Most current methods of creating these nanostructures are expensive and difficult to control, with the majority of techniques resulting in non-continuous nanostructures and nanoparticles. Electrospinning is an economic nanomanufacturing method resulting in continuous nanofibers. The method consists of spinning fiber-forming liquids in high electric fields. In this work, a modified electrospinning process was analyzed. The process utilized two concentric liquids that resulted in integrated continuous hollow or composite nanofibers. A new adjustable co-axial …


Fracture Of Bone Using Microindentation, Séverine Vennin Aug 2010

Fracture Of Bone Using Microindentation, Séverine Vennin

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Osteoporosis is a current disease which is especially of concern to post-menopausal women. It is characterized by a decrease of bone density and an increase in the risk of fracture. Interest in the fracture mechanisms with respect to the underlying biological structure of the bone is of great interest to researchers in this field. In this thesis, a new method based on microindentation on rat femurs was developed to determine the relation between the viscoelastic and the fracture properties of bone. The main goal is to measure the viscoelastic properties by using a dynamic mechanical analysis indentation method and then …


Diffuse Ultrasonic Scattering In Advanced Composites, Christer Stenström Aug 2010

Diffuse Ultrasonic Scattering In Advanced Composites, Christer Stenström

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Non destructive testing (NDT) is a noninvasive technique used for characterization and inspection of the integrity of objects. NDT is an important tool for research, manufacturing monitoring and in-service inspections. Ultrasonic testing is the most used NDT technique, which for advanced composites can identify several types of defects, like delamination and interlaminar cracks. Diffuse ultrasonics has shown to be able to extract information at the microscale of metals and therefore it is believed it can be used for advanced composites to extract microstructural information, i.e. at the level of fibers.

In this thesis, diffuse ultrasonic methods, together with spatial variance …


Characterization, Modeling, And Consequences Of The Development During Plastic Flow Of Large Anisotropy In The Wave-Speeds, Quentin Fichot Aug 2010

Characterization, Modeling, And Consequences Of The Development During Plastic Flow Of Large Anisotropy In The Wave-Speeds, Quentin Fichot

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

There is a substantial change in the anisotropy of some glassy polymers when they are subjected to large plastic deformations. The most pronounced case probably is seen in polycarbonate (PC), which is a tough thermoplastic used for many structural applications, including as a protective transparent armor for such applications as bulletproof glass. This development of anisotropy in the elastic response can be of the same order as the applied strains, and, therefore, becomes important in problems that show substantial plastic flow. In spite of this, this characteristic of glassy polymers has not been included in the current models. We propose …


Time Dependence Of Self-Assembly Process For The Formation Of Inorganic-Organic Hybrid Nanolayers, Alexandre Dhôtel Aug 2010

Time Dependence Of Self-Assembly Process For The Formation Of Inorganic-Organic Hybrid Nanolayers, Alexandre Dhôtel

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

There is increasing interest in self-assembled materials for energy storage, flexible electronics and hydrophobic barriers. Inorganic/organic hybrid thin films and especially organosilane-based coatings already have demonstrated their ability to achieve those goals. However, some fundamental points of their formation process by molecular self-assembly remain unexplained. Although the literature widely reports the effect of temperature on the final nanostructure, until now, no one has taken into account the importance of time during their synthesis.

The main objective of this study was to improve and complete the understanding of mechanisms responsible for the self-organization of organic/inorganic molecules into a highly ordered, layered …


Mechanical Milling Of Co-Rich Melt-Spun Sm-Co Alloys, Farhad Reza Golkar-Fard May 2010

Mechanical Milling Of Co-Rich Melt-Spun Sm-Co Alloys, Farhad Reza Golkar-Fard

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS Farhad Reza Golkar-Fard, M.S UNIVERSITY OF NEBRASKA, 2010 Advisor: Jeffrey E. Shield Rare-earth, high-energy permanent magnets are currently the best performing permanent magnets used today. The discovery of single domain magnetism in 1950’s ultimately led to the development of nanocomposite magnets which had superior magnetic properties. Previous work has shown that mechanical milling (MM) effectively generates nanoscale structures in Sm-Co-based alloys. MM of more Co-rich, melt-spun Sm-Co alloys (up to the eutectic composition) and the role of initial structure on the milling behavior were investigated.

Sm-Co alloys with compositions of Sm10.5Co …


Coupled Dem-Fem For Dynamic Analysis Of Granular Systems In Bending, Kitti Rattanadit May 2010

Coupled Dem-Fem For Dynamic Analysis Of Granular Systems In Bending, Kitti Rattanadit

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Characterizing the dynamic behavior of granular materials is one of the great challenges in the mechanics of granular matter. Methods for evaluating the mechanical properties of granular matter have applications in a variety of industries, mining and geotechnical activities, defense and military operations. A coupled 2D Discrete Element Method-Finite Element Method (DEM-FEM) code, called "BobKit", is developed and implemented for analyzing the behavior of a 2D granular layer on top of an elastic beam under deforming (quasi-static) or vibrating (dynamic) of the beam. The explicit time-integration dynamic code is used to simulate quasi-static and dynamic bending of the granular layer …


Numerical And Analytical Verification Of A Multiscale Computational Model For Impact Problems In Heterogeneous Viscoelastic Materials With Evolving Damage, Bruno Bachiega Araujo Jan 2010

Numerical And Analytical Verification Of A Multiscale Computational Model For Impact Problems In Heterogeneous Viscoelastic Materials With Evolving Damage, Bruno Bachiega Araujo

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Composites are engineered materials that take advantage of the particular properties of each of its two or more constituents. They are designed to be stronger, lighter and to last longer which can lead to the creation of safer protection gear, more fuel efficient transportation methods and more affordable materials, among other examples.

This thesis proposes a numerical and analytical verification of an in-house developed multiscale model for predicting the mechanical behavior of composite materials with various configurations subjected to impact loading. This verification is done by comparing the results obtained with analytical and numerical solutions with the results found when …