Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Pulsed Dielectric Breakdown And Permittivity Characterization Of Composite Solid Insulators In Pulsed Power Systems, Shawn T. Scoggin Jan 2024

Pulsed Dielectric Breakdown And Permittivity Characterization Of Composite Solid Insulators In Pulsed Power Systems, Shawn T. Scoggin

Electrical Engineering Dissertations

In high voltage pulsed power systems, liquids and gases are often used as insulating materials because they offer high breakdown strengths, conform around complex geometries, and are self-healing, but they can introduce significant engineering challenges and restrictions when it comes to implementing them. Solid dielectrics can be desirable for improving the maintenance requirements, shelf life, and power/energy density metrics associated with insulating high voltage pulsed power systems, however they possess design challenges of their own. Solid dielectrics are not self-healing and can be difficult to manufacture, especially around complex geometries. Epoxy dielectrics are of high interest because of their naturally …


Electrospinning Approach For The Improvement Of Mechanical And Dielectric Properties Of Anisotropic Nanofiber Mat By Using A Novel Fiber Alignment Technique, Blesson Isaac Dec 2018

Electrospinning Approach For The Improvement Of Mechanical And Dielectric Properties Of Anisotropic Nanofiber Mat By Using A Novel Fiber Alignment Technique, Blesson Isaac

Mechanical and Aerospace Engineering Dissertations

Many advanced applications, including aerospace, can benefit from materials with superior mechanical and dielectric properties. For these applications, most fiber alignment electrospinning research has focused on either mechanical property improvement or dielectric property improvement, but not both simultaneously. Through an improved apparatus design and system parameter optimization, this work develops an electrospinning apparatus that produces an increased electrostatic force and more tightly controlled discharged particle path to enable a more uniform distribution and higher degree of alignment in deposited electrospun material, which results in simultaneous improvement of both mechanical and dielectric properties. The current state-of-the-art in aligned electrospinning techniques are …