Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Doctoral Dissertations

2021

Articles 31 - 60 of 95

Full-Text Articles in Engineering

Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer Aug 2021

Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer

Doctoral Dissertations

Radiation detectors are important for a variety of fields including medical imaging, oil drilling, and nuclear security. Within nuclear security, they can serve a multitude of purposes whether that be imaging, localization, isotopic identification, or even just activity measurement. Even without directly seeing a nuclear material it is often able to notice their existence without a detector. Scintillators make up an important part of these detectors due to their large intrinsic efficiency, low cost, large volume, and relatively low upkeep. Due to the importance of the large number of purposes these scintillators may be used for, it can often be …


Quality And Productivity Improvements In Additive Manufacturing, Huseyin Kose Aug 2021

Quality And Productivity Improvements In Additive Manufacturing, Huseyin Kose

Doctoral Dissertations

Additive manufacturing (AM) is a relatively new manufacturing technology compared to the traditional manufacturing methods. Even though AM processes have many advantages, they also have a series of challenges that need to be addressed to adapt this technology for a wide range of applications and mass production.

AM faces a number of challenges, including the absence of methods/models for determining whether AM is the best manufacturing process for a given part. The first study of this thesis proposes a framework for choosing specific AM processes by considering the complexity level of a part. It has been proven that the method …


Thermochemical And Continuum Modeling To Understand The Chemical Composition Of Pwr Fuel Crud, Jason T. Rizk Aug 2021

Thermochemical And Continuum Modeling To Understand The Chemical Composition Of Pwr Fuel Crud, Jason T. Rizk

Doctoral Dissertations

Computational modeling of Chalk River Undesirable Deposits (CRUD) allows for the prediction of associated phenomena that impact nuclear power plant performance, reliability, and safety. It also provides insight into the physical mechanisms by which CRUD forms and affects plant performance. A major concern in pressurized water reactors (PWRs) is Axial Offset Anomaly (AOA) which is caused by CRUD’s proficiency at trapping boron within the reactor core. The ability to predict AOA and other phenomena requires a detailed explanation of the chemical composition of CRUD. By pairing computational models that can simulate the structure and species trapping with detailed thermochemical models, …


Automated Warehouse Systems: A Guideline For Future Research, Wenquan Dong Aug 2021

Automated Warehouse Systems: A Guideline For Future Research, Wenquan Dong

Doctoral Dissertations

This study aims to provide a comprehensive tool for the selection, design, and operation of automated warehouse systems considering multiple automated storage and retrieval system (AS/RS) options as well as different constraints and requirements from various business scenarios.

We first model the retrieval task scheduling problem in crane-based 3D AS/RS with shuttle-based depth movement mechanisms. We prove the problem is NP-hard and find an optimality condition to facilitate the development of an efficient heuristic. The heuristic demonstrates an advantage in terms of solving time and solution quality over the genetic algorithms and the other two algorithms taken from literature. Numerical …


Studies Of Creep Damage In The Heat-Affected Zone Of 9cr-1mo-Vnb Steel Weldments, John William Bohling Aug 2021

Studies Of Creep Damage In The Heat-Affected Zone Of 9cr-1mo-Vnb Steel Weldments, John William Bohling

Doctoral Dissertations

Creep strength enhanced ferritic (CSEF) steels are used in power plants for high temperature, pressure-containing welded components such as steam headers. One CSEF steel, 9Cr-1Mo-VNb or Grade 91, often exhibits localized creep deformation and cavitation in the weld heat-affected zone (HAZ), identified as Type IV creep damage. Three Grade 91 weldments were evaluated by creep testing and microstructural characterization using optical and scanning electron microscopy, combined with image analysis, to investigate microstructure evolution and creep damage. Two weldments fabricated from dissimilar base metals were used for direct comparison of creep damage in two materials simultaneously during cross-weld testing. Longitudinal creep …


High Resolution Electron Energy Loss Spectroscopy Of Plasmonic Nanostructures, Grace Pakeltis Aug 2021

High Resolution Electron Energy Loss Spectroscopy Of Plasmonic Nanostructures, Grace Pakeltis

Doctoral Dissertations

This dissertation discusses developing fabrication techniques to study the plasmonic phenomena of nanostructures utilizing high spatial and energy resolution of monochromated aberration-corrected scanning transmission electron. While standard lithography has been widely used to create planar nanostructures, investigation into 3-dimensional nanostructures is lacking. A robust synthesis approach utilizing focused electron beam induced deposition, atomic layer deposition, and thin film sputter deposition to fabricate complex 3D plasmonic architectures is described and characterization of single nanoresonators is presented. Additionally, this dissertation discusses the use of high-resolution electron energy loss spectroscopy to investigate the hybridization of gold nanorod oligomers. Experiment and simulation resolve magnetic …


Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul Aug 2021

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul

Doctoral Dissertations

Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs.

In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from …


Digital Cutting Force Modeling For Milling Operations, Timothy T. No Aug 2021

Digital Cutting Force Modeling For Milling Operations, Timothy T. No

Doctoral Dissertations

Process improvement in milling through improved understanding of machining dynamics is an on-going research endeavor. The objective of this project is to advance digital modeling of the milling process by incorporating tool-specific geometry in the machining analysis. Structured light scanning will be used to perform tool geometry measurements and produce a 3D model. The 3D model data will include the spatial location of the cutting edges, as well as the rake and relief profiles from the tool cross section. The rake and relief profiles will be imported, together with the work material flow stress model, into a finite element analysis …


Impact And Application Of Real-Time Control On Stormwater Systems, Aaron A. Akin Aug 2021

Impact And Application Of Real-Time Control On Stormwater Systems, Aaron A. Akin

Doctoral Dissertations

Stormwater control measures (SCMs) such as dry extended detention basins and wet ponds are common practices implemented by engineers and designers to mitigate the impact of stormwater runoff. These practices are designed based on historical rainfall data to attenuate runoff to pre-development conditions and, once they are installed, are unable to adapt to changing rainfall patterns or watershed restoration objectives. To solve these climate resiliency issues, several studies were conducted which investigated the impact of retrofitting such systems with a controllable outlet to increase or change detention times during rainfall events along with the novel instrumentation and methodologies necessary for …


Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong Aug 2021

Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong

Doctoral Dissertations

Density-functional tight-binding (DFTB) method is an approximation to the popular first-principles density functional theory (DFT) method. Recently, DFTB has gained considerable visibility due to its inexpensive computational requirements that confer it the capability of sustaining long-timescale reactive molecular dynamics (MD) simulations while providing an explicit description of electronic structure at all time steps. This capability allows the description of bond formation and breaking processes, as well as charge polarization and charge transfer phenomena, with accuracy and transferability beyond comparable classical reactive force fields. It has thus been employed successfully in the simulation of many complex chemical processes. However, its applications …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


Optimization Of Islanded Utility-Microgrids After Natural Disasters, Rodney Kizito Aug 2021

Optimization Of Islanded Utility-Microgrids After Natural Disasters, Rodney Kizito

Doctoral Dissertations

Natural disasters can cause widespread disturbances/power outages within distribution networks and hinder a utility’s ability to provide uninterrupted power supply to the critical public buildings (e.g., hospitals, grocery stores, fire, police and gas stations) within the utility’s serviced region. Backup generators, which are typically relied on during power interruptions, have limited capacities and have been reported to experience failures during usage. Microgrids, defined as localized power grids that incorporate distributed generators (DGs) and energy storage systems (ESSs) to allow them to operate independent of the main grid (i.e., island mode), can help utilities provide disaster relief power supply to critical …


Sensor Fusion For Object Detection And Tracking In Autonomous Vehicles, Mohamad Ramin Nabati Aug 2021

Sensor Fusion For Object Detection And Tracking In Autonomous Vehicles, Mohamad Ramin Nabati

Doctoral Dissertations

Autonomous driving vehicles depend on their perception system to understand the environment and identify all static and dynamic obstacles surrounding the vehicle. The perception system in an autonomous vehicle uses the sensory data obtained from different sensor modalities to understand the environment and perform a variety of tasks such as object detection and object tracking. Combining the outputs of different sensors to obtain a more reliable and robust outcome is called sensor fusion. This dissertation studies the problem of sensor fusion for object detection and object tracking in autonomous driving vehicles and explores different approaches for utilizing deep neural networks …


Advanced Wide-Area Monitoring System Design, Implementation, And Application, Weikang Wang Aug 2021

Advanced Wide-Area Monitoring System Design, Implementation, And Application, Weikang Wang

Doctoral Dissertations

Wide-area monitoring systems (WAMSs) provide an unprecedented way to collect, store and analyze ultra-high-resolution synchrophasor measurements to improve the dynamic observability in power grids. This dissertation focuses on designing and implementing a wide-area monitoring system and a series of applications to assist grid operators with various functionalities. The contributions of this dissertation are below:

First, a synchrophasor data collection system is developed to collect, store, and forward GPS-synchronized, high-resolution, rich-type, and massive-volume synchrophasor data. a distributed data storage system is developed to store the synchrophasor data. A memory-based cache system is discussed to improve the efficiency of real-time situation awareness. …


Model-Based And Model-Free Approaches For Power System Security Assessment, Mariana Magdy Mounir Kamel Aug 2021

Model-Based And Model-Free Approaches For Power System Security Assessment, Mariana Magdy Mounir Kamel

Doctoral Dissertations

Continuous security assessment of a power system is necessary to insure a reliable, stable, and continuous supply of electrical power to customers. To this end, this dissertation identifies and explores some of the various challenges encountered in the field of power system security assessment. Accordingly, several model-based and/or model-free approaches were developed to overcome these challenges.

First, a voltage stability index, named TAVSI, is proposed. This index has three important features: TAVSI applies to general load models including ZIP, exponential, and induction motor loads; TAVSI can be used for both measurement-based and model-based voltage stability assessment; and finally, TAVSI is …


Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini Aug 2021

Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini

Doctoral Dissertations

A collector probe in its simplest form is a rod inserted into a plasma so that impurities are deposited onto it. These probes are then removed and analyzed to determine the deposition profile both along the length of probe and across the width of it. This dissertation covers a series of collector probes experiments and accompanying interpretive modelling all with the main goal of providing evidence for long-hypothesized near scrape-off layer (SOL) accumulation of impurities that can lead to efficient core contamination. The structure of this dissertation is as follows. A brief outline of fusion energy and why we need …


Identifying And Assessing Bacterial Contamination In Stormwater Runoff And Receiving Streams, Songyi Liu Aug 2021

Identifying And Assessing Bacterial Contamination In Stormwater Runoff And Receiving Streams, Songyi Liu

Doctoral Dissertations

Stormwater runoff has been recognized as a significant non-point source of pollution responsible for serious ecological impacts. Microbial pollutants represent one of the major contaminants of concern in stormwater runoff and the receiving streams. Traditionally, fecal indicator bacteria (FIB) have been used extensively to assess the microbial quality of water, particularly the extent of fecal contamination in water. However, the application of FIB as indicators of microbial contamination bears known disadvantages of cultivation-dependent techniques, such as the inability to identify the majority of microbial populations that are not amenable to cultivation under laboratory conditions. The effectiveness of a cultivation-independent sequencing …


Toward Reliable And Efficient Message Passing Software For Hpc Systems: Fault Tolerance And Vector Extension, Dong Zhong Aug 2021

Toward Reliable And Efficient Message Passing Software For Hpc Systems: Fault Tolerance And Vector Extension, Dong Zhong

Doctoral Dissertations

As the scale of High-performance Computing (HPC) systems continues to grow, researchers are devoted themselves to achieve the best performance of running long computing jobs on these systems. My research focus on reliability and efficiency study for HPC software.

First, as systems become larger, mean-time-to-failure (MTTF) of these HPC systems is negatively impacted and tends to decrease. Handling system failures becomes a prime challenge. My research aims to present a general design and implementation of an efficient runtime-level failure detection and propagation strategy targeting large-scale, dynamic systems that is able to detect both node and process failures. Using multiple overlapping …


Understanding Colloidal And Surface Phenomena To Manufacture Energy-Dense Lithium-Ion And Solid-State Battery Cathodes, William B. Hawley Aug 2021

Understanding Colloidal And Surface Phenomena To Manufacture Energy-Dense Lithium-Ion And Solid-State Battery Cathodes, William B. Hawley

Doctoral Dissertations

Lithium-ion batteries (LIB) are a technology that have been commercialized since 1991 for portable electronics. Research and development have dramatically reduced the cost of LIBs over the past ten years such that it is becoming more feasible that electric vehicles utilizing LIBs can compete with vehicles using the internal combustion engine. To continue to reduce the cost of LIBs, novel cathode processing strategies must be pursued and the impact of these strategies on the cathode’s microstructure and performance must be well-understood. Moving beyond LIBs, solid-state lithium metal batteries (SSLMBs) are a safer, more energy-dense alternative due to non-flammable, thin solid …


Synthesis And Characterization Of Novel Li-Containing Garnet Ceramic Scintillators For Nuclear Security Applications, Joshua Paul Smith Aug 2021

Synthesis And Characterization Of Novel Li-Containing Garnet Ceramic Scintillators For Nuclear Security Applications, Joshua Paul Smith

Doctoral Dissertations

In the field of nuclear security, the ability to detect neutrons is a critical part of the prevention of the smuggling of illicit nuclear materials. The use of dual-mode detector would drastically reduce the number of passive detector systems necessary to meet the detection needs of the nuclear security industry. Li-containing scintillators have been researched for over 70 years; however, relatively few efficient dual-mode detector materials have been discovered. The currently available Li-containing scintillators are relatively low density, very difficult to grow, and highly hygroscopic. These limitations make the wide-spread use of Li-containing scintillators as dual-mode detectors inefficient and expensive. …


Enhancing Biomechanical Function Through Development And Testing Of Assistive Devices For Shoulder Impairment And Total Limb Amputation, Patrick Hall Aug 2021

Enhancing Biomechanical Function Through Development And Testing Of Assistive Devices For Shoulder Impairment And Total Limb Amputation, Patrick Hall

Doctoral Dissertations

Assistive devices serve as a potential for restoring sensorimotor function to impaired individuals. My research focuses on two assistive devices: a passive shoulder exoskeleton and a muscle-driven endoprosthesis (MDE). Previous passive shoulder exoskeletons have focused on testing during static loading conditions in the shoulder. However, activities of daily living are based on dynamic tasks. My research for passive shoulder exoskeletons analyzes the effect that a continuous passive assistance has on shoulder biomechanics. In my research I showed that passive assistance decreases the muscular activation in muscles responsible for positive shoulder exoskeleton. An MDE has the potential to have accurate and …


Modeling, Measurement And Mitigation Of Fast Switching Issues In Voltage Source Inverters, Wen Zhang Aug 2021

Modeling, Measurement And Mitigation Of Fast Switching Issues In Voltage Source Inverters, Wen Zhang

Doctoral Dissertations

Wide-bandgap devices are enjoying wider adoption across the power electronics industry for their superior properties and the resulting opportunities for higher efficiency and power density. However, various issues arise due to the faster switching speed, including switching transient voltage overshoot, unstable oscillation, gate driving and evaluation difficulty, measurement and monitoring challenge, and potential load insulation degradation. This dissertation first sets out to model and understand the switching transient voltage overshoots. Unique oscillation patterns and features of the turn-on and turn-off overvoltage are discovered and analyzed, which provides new insights into the switching transient. During the experimental characterization, a new unstable …


Neural-Net-Based Imager Offset Estimation In Fieldable Associated Particle Imaging, Justin R. Powers-Luhn May 2021

Neural-Net-Based Imager Offset Estimation In Fieldable Associated Particle Imaging, Justin R. Powers-Luhn

Doctoral Dissertations

Associated particle imaging with deuterium-tritium generators has been demonstrated to be extremely useful in laboratory settings. The Oak Ridge National Laboratory Nuclear Materials Identification System is once such system. A portable imaging system with similar capabilities could be of value to non-destructive analysis of potentially hazardous items. A neural network modeled after the ResNet architecture was trained to predict the position of the detector array. The network was trained using an MCNP simulation of the NMIS system with the neutron array offset in two position and one rotation dimension. The final network was accurate to within 0.49cm, 0.66cm, and 0.66◦ …


Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker May 2021

Elucidating Mechanisms And Genotypes Underlying Robust Phenotypes In Yarrowia Lipolytica, Caleb M. Walker

Doctoral Dissertations

Robustness is an important phenotype for bioenergy microbes to acquire but is difficult to engineer. Hence, tools for engineering microbial robustness are critical to unlock novel phenotypes for innovative bioprocessing strategies. The oleaginous yeast, Yarrowia lipolytica, is an exceptionally robust microbe that can tolerate stressful environments, assimilate a wide range of substrates, and produce high-value chemicals. In this doctoral dissertation, the impacts of systems biology and metabolic engineering to reveal mechanisms and identify genotypes- underlying robust phenotypes are addressed.

The first approach employs adaptive laboratory engineering to generate a platform strain by which to study superior robust mechanisms. This …


Microstructural Characterization And Analysis Of Laser-Powder Bed Fusion Grcop-84 By Metallurgical And Neutron Scattering Methods, Robert Minneci May 2021

Microstructural Characterization And Analysis Of Laser-Powder Bed Fusion Grcop-84 By Metallurgical And Neutron Scattering Methods, Robert Minneci

Doctoral Dissertations

GRCop-84 or Cu-8Cr-4Nb (atomic %) is a structural high-heat-flux Cu alloy that is dispersion strengthened by C15 Laves Cr2Nb [Niobium Chromide] that has seen significant development with laser additive manufacturing (AM), specifically laser-powder bed fusion (L-PBF) in recent years. A review of the development, properties, and performance of GRCop alloys has been conducted and provides pertinent background. The body of research provides fundamental understanding regarding microstructure evolution and phase interaction of GRCop-84 through characterization by neutron and X-ray scattering and metallographic techniques. This research is intended to bridge fundamental research of L-PBF, Cu alloys, structural thermal conductors, and …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Non-Contact Techniques For Human Vital Sign Detection And Gait Analysis, Farnaz Foroughian May 2021

Non-Contact Techniques For Human Vital Sign Detection And Gait Analysis, Farnaz Foroughian

Doctoral Dissertations

Human vital signs including respiratory rate, heart rate, oxygen saturation, blood pressure, and body temperature are important physiological parameters that are used to track and monitor human health condition. Another important biological parameter of human health is human gait. Human vital sign detection and gait investigations have been attracted many scientists and practitioners in various fields such as sport medicine, geriatric medicine, bio-mechanic and bio-medical engineering and has many biological and medical applications such as diagnosis of health issues and abnormalities, elderly care and health monitoring, athlete performance analysis, and treatment of joint problems. Thoroughly tracking and understanding the normal …


Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang May 2021

Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang

Doctoral Dissertations

Structure and dynamics at the atomic level in metallic glasses and liquids are poorly understood when compared to the crystalline solids. For instance, even though viscosity is the basic property of liquids, its atomistic origin is not well elucidated. Also, the physics of the fragility of liquids and the crossover phenomenon is far from full understanding. Earlier, through molecular dynamics (MD) simulations a direct connection was found between the timescale describing the macroscopic viscous behavior, the Maxwell relaxation time (tM = h/G, h is the shear viscosity and G is the high-frequency shear modulus) and …


Libowski: A Numerical Framework For Solving Depletion And Mass Transport In Molten Salt Reactors, Robert Z. Taylor May 2021

Libowski: A Numerical Framework For Solving Depletion And Mass Transport In Molten Salt Reactors, Robert Z. Taylor

Doctoral Dissertations

Molten salt reactors (MSRs) are a class of next-generation liquid fueled nuclear reactor which show great promise and industrial interest. With this type of reactor comes great difficulty in many modeling and simulation aspects which are required for design, operational efficiency and regulatory licensing. Solving the set of coupled depletion and mass transport equations required for modeling and simulations of these reactors is of great interest. This manuscript discusses the formulation of a numerical framework for solving the complex set of depletion and mass transport problems in MSRs. This is accomplished by first defining the set of equations that must …


Microstructural Investigation Of Hydride Reorientation In Zirconium Based Spent Nuclear Fuel Cladding, Tyler S. Smith May 2021

Microstructural Investigation Of Hydride Reorientation In Zirconium Based Spent Nuclear Fuel Cladding, Tyler S. Smith

Doctoral Dissertations

Hydride embrittlement and the impact of hydride reorientation are failure phenomena of particular interest during the transportation process of spent nuclear fuel from wet storage to dry storage. This process exposes the cladding to elevated temperatures and high pressure-induced hoop stresses that can release the hydride platelets back into solution and cause them to radially precipitate upon cooling. Though the impact of high temperature and high-pressure conditions on hydride reorientation have been investigated for many nonirradiated specimens, a data gap remains for the coupling effects of irradiation at these conditions in high burnup spent nuclear fuel rods. To simulate this …