Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Defect Levels In Cu₂Znsn(Sₓse₁₋ₓ)₄ Solar Cells Probed By Current-Mode Deep Level Transient Spectroscopy, S. Das, S. K. Chaudhuri, R. N. Bhattacharya, K. C. Mandal May 2014

Defect Levels In Cu₂Znsn(Sₓse₁₋ₓ)₄ Solar Cells Probed By Current-Mode Deep Level Transient Spectroscopy, S. Das, S. K. Chaudhuri, R. N. Bhattacharya, K. C. Mandal

Faculty Publications

No abstract provided.


Atomistic Investigation Of Scratching-Induced Deformation Twinning In Nanocrystalline Cu, Junjie Zhang, Tao Sun, Yoganda Yan, Dong Shen, Xiaodong Li Oct 2012

Atomistic Investigation Of Scratching-Induced Deformation Twinning In Nanocrystalline Cu, Junjie Zhang, Tao Sun, Yoganda Yan, Dong Shen, Xiaodong Li

Faculty Publications

Deformation twinning is an important deformation mode of nanocrystalline metals. In current study, we investigate the scratching-induced deformation twinning in nanocrystallineCu by means of molecular dynamics simulations. The tribological behavior, the deformation mechanisms, the formation mechanism of deformation twins, and the grain size dependence of the propensity of deformation twinning are elucidated. Simulation results demonstrate that deformation twinning plays an important role in the plastic deformation of nanocrystallineCu under nanoscratching, in addition to dislocation activity and grain boundary-associated mechanism. The nucleation of initial twinning partial dislocations originates from the dissociation of lattice partial dislocations that emit from grain boundary triple …


Adhesion At Diamond /Metal Interfaces: A Density Functional Theory Study, Haibo Guo, Yue Qi, Xiaodong Li Feb 2010

Adhesion At Diamond /Metal Interfaces: A Density Functional Theory Study, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

To understand the basic material properties required in selecting a metallic interlayer for enhanced adhesion of diamondcoatings on the substrates, the interfaces between diamond and metals with different carbide formation enthalpies (Cu, Ti, and Al) are studied using density functional theory. It is found that the work of separation decreases, while the interface energy increases, with the carbide formation enthalpy ΔHf (Tiys (Ti>Cu>Al), is needed to achieve a higher overall interface strength. In addition, when the surface energy is larger than the interface energy, a wetted diamond/metal interface is formed during diamondnucleation, providing the strongest adhesion …


High-Pressure Torsion-Induced Grain Growth In Electrodeposited Nanocrystalline Ni, X. Z. Liao, A. R. Kilmametov, R. Z. Valiev, Hongsheng Gao, Xiaodong Li, A. K. Mukherjee, J. F. Blingert, Y. T. Zhu Jan 2006

High-Pressure Torsion-Induced Grain Growth In Electrodeposited Nanocrystalline Ni, X. Z. Liao, A. R. Kilmametov, R. Z. Valiev, Hongsheng Gao, Xiaodong Li, A. K. Mukherjee, J. F. Blingert, Y. T. Zhu

Faculty Publications

Deformation-induced grain growth has been reported in nanocrystalline (nc) materials under indentation and severe cyclic loading, but not under any other deformation mode. This raises an issue on critical conditions for grain growth in nc materials. This study investigates deformation-induced grain growth in electrodeposited nc Ni during high-pressure torsion (HPT). Our results indicate that high stress and severe plastic deformation are required for inducing grain growth, and the upper limit of grain size is determined by the deformation mode and parameters. Also, texture evolution suggests that grain-boundary-mediated mechanisms played a significant role in accommodating HPT strain.


A Mathematical Model For Electroless Copper Deposition On Planar Substrates, M. Ramasubramanian, Branko N. Popov, Ralph E. White, K. S. Chen Jan 1999

A Mathematical Model For Electroless Copper Deposition On Planar Substrates, M. Ramasubramanian, Branko N. Popov, Ralph E. White, K. S. Chen

Faculty Publications

A mathematical model for the electroless deposition of copper on a planar electrode is presented and used to make time-dependent predictions on the various quantities in the system. The model takes into account mass transport by diffusion and migration, Butler-Volmer kinetics at the electrode surface, and mixed potential theory. A finite difference approach is used to solve the equations, and the resultant model is used to predict the concentration profiles, potential response, and plating rate as a function of time and concentration of various reactive components.


Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Jan 1996

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Faculty Publications

Electrochemical properties of bare and copper-coated LaNi4.27Sn0.24 electrodes were investigated in alkaline solution. The exchange current density, polarization resistance, and equilibrium potential were determined as functions of the state of charge in the electrodes. The symmetry factors for bare and copper-coated electrodes were estimated to be 0.53 and 0.52, respectively. By using a constant current discharge technique, the hydrogen diffusion coefficient in bare and coated LaNi4.27Sn0.24 was estimated to be 6.75 × 10–11 cm2/s.


Linear Algebra Used To Determine Independent Half‐Cell Equations, D. H. Coleman, Ralph E. White Jan 1996

Linear Algebra Used To Determine Independent Half‐Cell Equations, D. H. Coleman, Ralph E. White

Faculty Publications

No abstract provided.


A Mathematical Model For A Parallel Plate Electrochemical Reactor, Cstr, And Associated Recirculation System, T V. Nguyen, C W. Walton, Ralph E. White Jan 1986

A Mathematical Model For A Parallel Plate Electrochemical Reactor, Cstr, And Associated Recirculation System, T V. Nguyen, C W. Walton, Ralph E. White

Faculty Publications

A mathematical model is presented for a system comprised of a parallel plate electrochemical reactor (PPER) and a continuous, stirred-tank reactor (CSTR) under both total and partial recycle. The model is used to predict the time dependent behavior of the electrowinning of copper from an aqueous, hydrochloric acid solution. The model includes many important aspects of a PPER/CSTR system which have been neglected previously. These aspects are the kinetics of electrode reactions, the electroneutrality condition, three mass transfer processes for ionic species in the electrolyte (diffusion, ionic migration, and convection) and the electrode gap in the PPER, and the inclusion …


Potential-Selective Deposition Of Copper From Chloride Solutions Containing Iron, Ralph E. White, James A. Trainham, John Newman, Thomas W. Chapman Jan 1977

Potential-Selective Deposition Of Copper From Chloride Solutions Containing Iron, Ralph E. White, James A. Trainham, John Newman, Thomas W. Chapman

Faculty Publications

The hydrometallurgy of copper may involve leaching of the metal from its ore with an aqueous solution containing cupric and ferric chloride. The subsequent deposition of copper from such a process stream is modeled here in an idealized electrochemical cell with a rotating-disk electrode. The potential distribution and concentration profiles within the diffusion layer are predicted for given potential differences between the electrode and the solution. The cuprous ion, which is formed by the reduction of the complexed cupric ion at the electrode, is stabilized in the chloride solution and can react either at the electrode or with ferric species …