Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Massachusetts Amherst

2018

Discipline
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 102

Full-Text Articles in Engineering

Silicon-Germanium Heterojunction Bipolar Transistors For Large-Scale Low-Power Cryogenic Sensing Systems, Shirin Montazeri Nov 2018

Silicon-Germanium Heterojunction Bipolar Transistors For Large-Scale Low-Power Cryogenic Sensing Systems, Shirin Montazeri

Doctoral Dissertations

Cryogenic low noise amplifiers (LNAs) are one of the key components in many emerging applications such as radio astronomy or quantum computing in which a weak incoming signal needs to be read out. There have been extensive studies on the feasibility of leveraging silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) to implement cryogenic LNAs in the past. The deployment of such LNAs in the future large-scale systems in radio astronomy or quantum computing is contingent upon the possibility of developing LNAs with reduced DC power dissipation to enable the cooling of a large number of array elements inside a cryogenic cooler. …


Engineering High Performance Epoxy Thermosets Using Next-Generation Impact Modification, Madhura Pawar Nov 2018

Engineering High Performance Epoxy Thermosets Using Next-Generation Impact Modification, Madhura Pawar

Doctoral Dissertations

Optimization of fracture toughness of high Tg thermosets was done through systematic investigation of different formulations of reactive functional modifiers using soft particle impact modification. Important parameters like particle size, interparticle distance (IPD) were varied by altering cure kinetics and modifying the molecular architecture of the additives. The best performing systems showed an increase in fracture toughness of 70-80% with an optimum Rp of 1.3 μm and IPD of 0.4 μm at 15 vol% impact modifier. In addition, a new platform of using block copolymer blends was studied for its feasibility to achieve non-spherical morphology for effective impact …


Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz Nov 2018

Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz

Doctoral Dissertations

Breast cancer is plagued by two key clinical challenges; drug resistance and metastasis. Most work to date probes these events on an extremely rigid plastic surface, which recapitulates few aspects of these processes in humans. A malignant cell first resides in breast tissue, then likely travels to the bone, brain, liver, or lung, each of which has a distinct mechanical and biochemical profile. Cells transmit mechanical forces into intracellular tension and biochemical signaling events, and here we hypothesize that this mechanotransduction influences drug response, growth, and migration. To probe the impact of extracellular matrix on drug resistance, we defined a …


Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li Nov 2018

Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li

Doctoral Dissertations

In the past decades, the computing capability has shown an exponential growth trend, which is observed as Moore’s law. However, this growth speed is slowing down in recent years mostly because the down-scaled size of transistors is approaching their physical limit. On the other hand, recent advances in software, especially in big data analysis and artificial intelligence, call for a break-through in computing hardware. The memristor, or the resistive switching device, is believed to be a potential building block of the future generation of integrated circuits. The underlying mechanism of this device is different from that of complementary metal-oxide-semiconductor (CMOS) …


Turbulent Mixers For Protein Folding Experiments, Venkatesh Inguva Nov 2018

Turbulent Mixers For Protein Folding Experiments, Venkatesh Inguva

Doctoral Dissertations

Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Various turbulence models are simulated to determine appropriate model of the design requirements. Experimental validation …


Fabrication Of High Refractive Index, Periodic, Composite Nanostructures For Photonic And Sensing Applications, Irene Howell Nov 2018

Fabrication Of High Refractive Index, Periodic, Composite Nanostructures For Photonic And Sensing Applications, Irene Howell

Doctoral Dissertations

This dissertation examines methods of fabricating high refractive index, periodic structures and their applications. Structures with a refractive index periodicity in one-dimensionally are fabricated by stacking layers of (high-refractive index) nanoparticle-filled and unfilled layers. More complex two- and three-dimensional structures are fabricated by direct printing of nanoparticles via solvent-assisted soft nanoimprint lithography. Polymer-nanoparticle composites are an active area of research and development especially for photonic applications. We show use of two composite formulations, first for fabrication of one-dimensional photonic crystals, and second for scalable UV-nanoimprinting. One dimensional photonic crystals, which possess a periodicity in refractive index, result in a constructive …


Preparing Water Supply Systems For Climate Change: The Role Of Hydrologic Forecasting In The Northeast, Leslie Decristofaro Nov 2018

Preparing Water Supply Systems For Climate Change: The Role Of Hydrologic Forecasting In The Northeast, Leslie Decristofaro

Doctoral Dissertations

Fresh water is a resource strongly impacted by climactic conditions. Water supply systems in the northeastern United States will see the effects of climate change on their water quality and quantity in various ways, including changes in seasonality of flows, changes in the frequency and magnitude of extreme precipitation events, and changes in the variability of precipitation and water availability. Five northeastern water supplies examined are expected to maintain at least 95% monthly reliability over a range of climates wider than the current projections. However, model results indicate that turbidity levels in New York City's Ashokan Reservoir will change with …


Rheological Properties Of A Model Soft Solid Nanocomposite, Vijesh Tanna Oct 2018

Rheological Properties Of A Model Soft Solid Nanocomposite, Vijesh Tanna

Doctoral Dissertations

ABSTRACT RHEOLOGICAL PROPERTIES OF A MODEL SOFT SOLID NANOCOMPOSITE SEPTEMBER 2018 VIJESH A. TANNA B.S. UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN M.S. UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D. UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Prof. H. Henning Winter The fabrication and physical properties of polymer/clay nanocomposites has received a great deal of interest in both academic and industrial settings. Clay is a natural 2D mineral comprised of stacks of platelets with high aspect ratios held together through electrostatic interactions. Typically, polymer/clay composite are found to have the best physical properties when these clay sheets are randomly dispersed, exfoliated, throughout the polymer matrix. However, …


Probing Local Vacancy-Driven Resistive Switching In Metal Oxide Nanostructures, Jiaying Wang Oct 2018

Probing Local Vacancy-Driven Resistive Switching In Metal Oxide Nanostructures, Jiaying Wang

Doctoral Dissertations

Novel nonvolatile memory technologies garner intense research interest as conventional ash devices approach their physical limit. Memristors, often comprising an insulating thin film between two metal electrodes to constitute a class of two-terminal devices, enable a variety of important large data storage and data-driven computing applications. In addition to nonvolatile behavior, other features such as high scalability, low power consumption, and sub-nanosecond response times make memristors among the most attractive candidate systems. Their strength in electronic storage relies on the unique properties of the tunable variations in resistance induced from the accumulation of charged defects based on the applied bias …


Experimental Investigation Of Hydraulic Fracturing Fluid On Shale And Soil, Zhenning Yang Oct 2018

Experimental Investigation Of Hydraulic Fracturing Fluid On Shale And Soil, Zhenning Yang

Doctoral Dissertations

Mitigation and prevention of shale-formation damage caused by hydraulic-fracturing fluid/rock interactions play an important role in well-production stability and subsequent refracturing design. This study presents three experimental investigations on the interaction of water/shale, fluid/clay, and fluid/shale. A series of experiments were designed to investigate fluid/shale interactions: hydrophilic to hydrophobic alteration through chemical-vapor deposition, nanoindentation testing on shale sample, geotechnical laboratory experiments on contaminated clay, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscope (SEM) on shale sample. A clay-matrix-based data-screening criterion is proposed for nanoindentation. The continuous-stiffness-measurment (CSM) method is proved to have better definition and characterization of …


Model-Based Predictive Analytics For Additive And Smart Manufacturing, Zhuo Yang Oct 2018

Model-Based Predictive Analytics For Additive And Smart Manufacturing, Zhuo Yang

Doctoral Dissertations

Qualification and certification for additive and smart manufacturing systems can be uncertain and very costly. Using available historical data can mitigate some costs of producing and testing sample parts. However, use of such data lacks the flexibility to represent specific new problems which decreases predictive accuracy and efficiency. To address these compelling needs, in this dissertation modeling techniques are introduced that can proactively estimate results expected from additive and smart manufacturing processes swiftly and with practical levels of accuracy and reliability. More specifically, this research addresses the current challenges and limitations posed by use of available data and the high …


Multi-Sensor Localization And Tracking In Disaster Management And Indoor Wayfinding For Visually Impaired Users, Zhuorui Yang Oct 2018

Multi-Sensor Localization And Tracking In Disaster Management And Indoor Wayfinding For Visually Impaired Users, Zhuorui Yang

Doctoral Dissertations

This dissertation proposes a series of multi-sensor localization and tracking algorithms particularly developed for two important application domains, which are disaster management and indoor wayfinding for blind and visually impaired (BVI) users. For disaster management, we developed two different localization algorithms, one each for Radio Frequency Identification (RFID) and Bluetooth Low Energy (BLE) technology, which enable the disaster management system to track patients in real-time. Both algorithms work in the absence of any pre-deployed infrastructure along with smartphones and wearable devices. Regarding indoor wayfinding for BVI users, we have explored several types of indoor positioning techniques including BLE-based, inertial, visual …


Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou Oct 2018

Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou

Doctoral Dissertations

Hydrogels are crosslinked polymeric networks imbibed with aqueous solutions. They undertake dramatic volume changes through swelling and deswelling processes, which can be stimulated by factors like temperature, pH or different chemicals. These unique properties render hydrogels particularly interesting for shape morphing related applications. In this thesis, we focus on the swelling induced deformation of thermally responsive hydrogels with lower critical solution temperatures (LCSTs), including poly(N-isopropylacrylamide) (PNIPAm) and poly(N,N-diethylacrylamide) (PDEAm). Particularly, benzophenone containing monomers are copolymerized with NIPAm or DEAm to create photocrosslinkable temperature-responsive polymers, which allows fabrication of hydrogels with controlled shapes and crosslinking …


Transiency-Driven Resource Management For Cloud Computing Platforms, Prateek Sharma Oct 2018

Transiency-Driven Resource Management For Cloud Computing Platforms, Prateek Sharma

Doctoral Dissertations

Modern distributed server applications are hosted on enterprise or cloud data centers that provide computing, storage, and networking capabilities to these applications. These applications are built using the implicit assumption that the underlying servers will be stable and normally available, barring for occasional faults. In many emerging scenarios, however, data centers and clouds only provide transient, rather than continuous, availability of their servers. Transiency in modern distributed systems arises in many contexts, such as green data centers powered using renewable intermittent sources, and cloud platforms that provide lower-cost transient servers which can be unilaterally revoked by the cloud operator. Transient …


Extreme Indentation And Fracture Of Soft Polymer Gels, Shruti Rattan Oct 2018

Extreme Indentation And Fracture Of Soft Polymer Gels, Shruti Rattan

Doctoral Dissertations

The mechanical properties of conventional hard materials, such as metals and ceramics, have received widespread attention in the past several decades; however mechanical characterization, failure in particular, of soft materials, such as polymer gels, elastomers, and biological tissues and organs, has largely been ignored. While practical issues such as difficulty in handling, processing, and slippage offer complexities in characterization, the breakdown of the fundamental assumptions of linear elastic fracture mechanics due to large strains prior to failure, significant energy dissipation ahead of a crack tip and rate and time dependent effects makes understanding of failure in soft materials even more …


Computational Exploration Of Flash-Boiling Internal Flow And Near-Nozzle Spray, Sampath K. Rachakonda Oct 2018

Computational Exploration Of Flash-Boiling Internal Flow And Near-Nozzle Spray, Sampath K. Rachakonda

Doctoral Dissertations

Gasoline engines operating under the principle of direct injection are susceptible to flash-boiling due to superheated nature of the fuel and the sub-atmospheric in-cylinder pressures during injection. A review of the literature on flash-boiling sprays shows that a majority of the studies have focused on the far-field regions of the spray, with limited attention given to understanding the influences of the injector geometry and the near-nozzle regions of the spray. Modeling the internal nozzle flow and the primary atomization, on which the far-field spray depends, is a challenge. This thesis, therefore, is aimed at understanding the complex flow through a …


Performance And Economic Analysis Of Hybrid Microhydro Systems, Ram Poudel Oct 2018

Performance And Economic Analysis Of Hybrid Microhydro Systems, Ram Poudel

Doctoral Dissertations

Microhydro (MHP) systems usually employ unregulated turbines and an electronic load controller, a demand-side control device. Existing analytical models for such systems are lacking details, especially supply-side flow control, for performance simulation at hourly or sub-hourly scales. This work developed stochastic models for downscaling of streamflow and an empirical model of MHP systems. We integrated these models within the framework of Hybrid2 tool to simulate the long-term performance of a tri-hybrid system consisting of hydropower, solar PV and wind turbine. Based on an additive model of time series decomposition, we develop a Multiple Input Single Output (MISO) model in order …


Compressibility And Normalized Undrained Shear Behavior Of Soft Coastal Fine-Grained Soils, Arash Pirouzi Oct 2018

Compressibility And Normalized Undrained Shear Behavior Of Soft Coastal Fine-Grained Soils, Arash Pirouzi

Doctoral Dissertations

This thesis investigates empirical correlations between consolidation design parameters and index properties of soft fine-grained soils from coastal Louisiana region, normalized undrained shear behavior of high liquid limit organic fine-grained coastal soils, and consolidation behavior of fine-grained soils. The first phase of this research consisted of studying a database of site investigation data from 15 marsh creation projects across the coastal Louisiana region. The database includes a wide variety of fine-grained soils ranging from low-plasticity inorganic clays and silts to high-plasticity organic clays and silts with a large range of water content and liquid limit. Most of the empirical correlations …


Leveraging Eye Structure And Motion To Build A Low-Power Wearable Gaze Tracking System, Addison Mayberry Oct 2018

Leveraging Eye Structure And Motion To Build A Low-Power Wearable Gaze Tracking System, Addison Mayberry

Doctoral Dissertations

Clinical studies have shown that features of a person's eyes can function as an effective proxy for cognitive state and neurological function. Technological advances in recent decades have allowed us to deepen this understanding and discover that the actions of the eyes are in fact very tightly coupled to the operation of the brain. Researchers have used camera-based eye monitoring technology to exploit this connection and analyze mental state across across many different metrics of interest. These range from simple things like attention and scene processing, to impairments such as a fatigue or substance use, and even significant mental disorders …


Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on …


Evaluating Policy And Climate Impacts On Water Resources Systems Using Coupled Human-Natural Models, Hassaan Furqan Khan Oct 2018

Evaluating Policy And Climate Impacts On Water Resources Systems Using Coupled Human-Natural Models, Hassaan Furqan Khan

Doctoral Dissertations

Extensive human intervention in the terrestrial hydrosphere means that virtually every river basin globally reflects the interaction between human and natural hydrologic processes. Thus, sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment but also incorporate the impact of human actions on the natural system. Informed policy making to address our water challenges requires a comprehensive understanding of these feedbacks and how they might be affected by future changes in climate. This work develops coupled human-natural models for improved surface water and groundwater management in water-scarce regions under future changes in climate. …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Evaluation Of The Erodibility Of Soft Clays And The Influence Of Biopolymers, Pamela Judge Oct 2018

Evaluation Of The Erodibility Of Soft Clays And The Influence Of Biopolymers, Pamela Judge

Doctoral Dissertations

Erosion of silts and clays is less well understood than erosion of sands. Further, current and anticipated climate change impacts along coastlines compel consideration of new approaches to coastal protection measures; seawalls and breakwaters designs now include natural and nature-based measures. The first research topic consists of the Adaptive Gradients Framework which was a theoretically-informed facilitation tool. The framework was intended to aid a collaborative and interdisciplinary decision-making process to encourage inclusion of natural and nature-based measures in coastal protection planning and design. This research is the culmination of a series of workshops and fieldtrips executed by the Sustainable Adaptive …


Computational Modeling Of The Structure And Catalytic Behavior Of Graphene-Supported Pt And Ptru Nanoparticles, Raymond Gasper Oct 2018

Computational Modeling Of The Structure And Catalytic Behavior Of Graphene-Supported Pt And Ptru Nanoparticles, Raymond Gasper

Doctoral Dissertations

Computer modeling has the potential to revolutionize the search for new catalysts for specific applications primarily via high-throughput methodologies that allow researchers to scan through thousands or millions of potential catalysts in search of an optimal candidate. To date, the bulk of the literature on computational studies of heterogeneous catalysis has focused on idealized systems with near-perfect crystalline surfaces that are representative of macroscopic catalysts. Advancing the frontier to nanoscale catalysis, in particular, heterogeneous catalysis on nanoclusters, requires consideration of low-symmetry nanoparticles with realistic structures including the attendant complexity arising from under-coordination of catalyst atoms and dynamic fluxionality of clusters. …


Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen Oct 2018

Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen

Doctoral Dissertations

The aggregate solar capacity in the U.S. is rising rapidly due to continuing decreases in the cost of solar modules. For example, the installed cost per Watt (W) for residential photovoltaics (PVs) decreased by 6X from 2009 to 2018 (from $8/W to $1.2/W), resulting in the installed aggregate solar capacity increasing 128X from 2009 to 2018 (from 435 megawatts to 55.9 gigawatts). This increasing solar capacity is imposing operational challenges on utilities in balancing electricity's real-time supply and demand, as solar generation is more stochastic and less predictable than aggregate demand. To address this problem, both academia and utilities have …


Increasing Organic Semiconductor Performance Through Chemical And Processing Modifications, Edmund Burnett Oct 2018

Increasing Organic Semiconductor Performance Through Chemical And Processing Modifications, Edmund Burnett

Doctoral Dissertations

This thesis focuses on tuning molecular packing of organic semiconductors through processing or chemical modifications to increase performance and establish structure-property relationships. Chapter 2 utilizes differing processing techniques to alter the molecular packing of bistetracene in the thin film and thorough polymorph characterization to relate the modification of molecular packing to the increase in charge mobility and mechanism. Chapter 3 introduces the oligomer as a model system to resolve issues that would be difficult or impossible using polymeric systems, due to their monodispersity and increased crystallinity allows for more detailed structural characterization. In this chapter we determine a crystal packing …


Surface Functionalization Of Fabrics And Threads For Smart Textiles, Morgan Baima Oct 2018

Surface Functionalization Of Fabrics And Threads For Smart Textiles, Morgan Baima

Doctoral Dissertations

The future of electronics is moving toward wearable devices and therefore requires a shift away from hard, inflexible materials towards fibers, threads, and fabrics that conform to the shape of the body. Therefore new methods for incorporating textiles as electronic components are needed to replace conventional processing techniques used with smooth, flat substrates like glass, silicon, and many polymers. Toward this end, this work investigates different methods that can be used to tune textile surfaces for electronic functionality, including weaving, solution grafting, and initiated chemical vapor deposition (iCVD). While all of these methods were used to make triboelectrically-active textiles, iCVD …


An Architecture Evaluation And Implementation Of A Soft Gpgpu For Fpgas, Kevin Andryc Oct 2018

An Architecture Evaluation And Implementation Of A Soft Gpgpu For Fpgas, Kevin Andryc

Doctoral Dissertations

Embedded and mobile systems must be able to execute a variety of different types of code, often with minimal available hardware. Many embedded systems now come with a simple processor and an FPGA, but not more energy-hungry components, such as a GPGPU. In this dissertation we present FlexGrip, a soft architecture which allows for the execution of GPGPU code on an FPGA without the need to recompile the design. The architecture is optimized for FPGA implementation to effectively support the conditional and thread-based execution characteristics of GPGPU execution without FPGA design recompilation. This architecture supports direct CUDA compilation to a …


Evaluating The Toxicity And Formation Of Halobenzoquinones In Point-Of-Use Chlorinated Drinking Water, Stephanie Hung Oct 2018

Evaluating The Toxicity And Formation Of Halobenzoquinones In Point-Of-Use Chlorinated Drinking Water, Stephanie Hung

Masters Theses

Chlorine has effectively reduced the prevalence of waterborne diseases, however there are secondary consequences to this public health advancement. Disinfection byproducts (DBPs) are chemicals formed when chlorine reacts with natural organic matter (NOM) in water. A new class of DBPs, halobenzoquinones (HBQs), has recently been identified and data suggests it could be potentially carcinogenic and up to 1000 times more toxic than some regulated DBPs. So far, in vitro studies have assessed HBQ toxicity without taking into account its transformation in cell media into potentially less toxic compounds. This study evaluated the toxic effects of one HBQ, 2,6-DCBQ, and its …


Electroplating Of Copper On Tungsten Powder, Richard Berdos Oct 2018

Electroplating Of Copper On Tungsten Powder, Richard Berdos

Masters Theses

Strengthening, resistant and shielding properties, to name a few, can be achieved by implementing a surface material coating onto an engineering component. Various elements of these compounded parts can augment the functionality of the part, such as, increased life time and more interactive surfaces. Tungsten has proven to be a challenge to plate with other metals, but if done correctly, the results can allow for the cold spray of tungsten. Cold spraying tungsten particles alone provides a challenge because the powder is too hard and instead of adhering, it erodes the surface it is attempting to plate. Coating tungsten in …