Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Theses/Dissertations

Discipline
Keyword
Publication Year
Publication
File Type

Articles 271 - 300 of 1291

Full-Text Articles in Engineering

Effects Of A Hip Orthosis On Lumbopelvic Coordination In Individuals With And Without Low Back Pain, Colin Drury Jan 2020

Effects Of A Hip Orthosis On Lumbopelvic Coordination In Individuals With And Without Low Back Pain, Colin Drury

Theses and Dissertations--Biomedical Engineering

Individuals with low back pain (LBP) demonstrate an abnormal lumbopelvic coordination compared to back-healthy individuals. This abnormal coordination presents itself as a reduction in lumbar contribution and an increase in pelvic contribution to trunk motion. This study investigated the ability of a hip orthosis to correct such an abnormal lumbo-pelvic coordination by restricting pelvic rotation and, as a result, increasing lumbar contributions. The effects of the hip orthosis on the magnitude and timing characteristics of lumbopelvic coordination were investigated in 20 patients with LBP and 20 asymptomatic controls. The orthosis significantly increased lumbar contributions by 11%, 5.42%, 4.84%, and 4.89% …


Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan Jan 2020

Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan

Theses and Dissertations--Chemical and Materials Engineering

The detoxification of chlorinated organics from groundwater, such as trichloroethylene (TCE), tetrachloroethylene (PCE), polychlorinated biphenyl (PCB) and carbon tetrachloride (CTC), is a challenging area. Reductive dechlorination has been investigated using iron and iron-based nanoparticles, such as bare Fe, sulfidized Fe (S-Fe) and palladized Fe (Pd-Fe). However, issues including particle agglomeration, difficulties in recycling and particle leaching have been reported to hinder the application and wide usage of these techniques. The integration of nanoparticles and membranes can address these issues because of the large surface area, stability, and the potential for versatile functionalities. In this study, commercial polyvinylidene difluoride (PVDF) microfiltration …


Characterization And Electrochemical Performance Of Dopamine-Sensitized Titania Thin Films, Joshua Garay Jan 2020

Characterization And Electrochemical Performance Of Dopamine-Sensitized Titania Thin Films, Joshua Garay

Theses and Dissertations--Chemical and Materials Engineering

Sensitization of mesoporous titania films with dopamine and polydopamine for visible light photoelectrochemical activity is investigated. Sensitization effectiveness is compared with 8 mM dopamine solutions of varying pH (acidic, basic, and neutral), as well as with a basic polydopamine solution. Vibrational changes due to dopamine attachment are determined from detached powders by Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) is used to quantify organics attached. X-ray photoelectron spectroscopy (XPS) of intact films probes the chemically induced charge shift from dopamine attachment. Cyclic voltammetry identifies the irreversible dopamine oxidation and tin reduction voltages. Finally, chronoamperometric curves are used to compare …


Silica Nanoporous Confinement Effects On Ionic Liquid Properties For Better Design Of Small Molecule Separation, Electrochemical Devices And Drug Delivery, Yuxin He Jan 2020

Silica Nanoporous Confinement Effects On Ionic Liquid Properties For Better Design Of Small Molecule Separation, Electrochemical Devices And Drug Delivery, Yuxin He

Theses and Dissertations--Chemical and Materials Engineering

Silica nanoconfinement provides a high level of control of ionic liquids (ILs) in localizing catalysts, creating distinct environment for tuning reactivity and controlling the partition of solvents, reactants and products. Silica thin films with two different pore sizes (2.5 nm and 8 nm) were synthesized to study the effect of nanopore confinement on ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). Silica thin films with accessible 8 nm pore diameters were synthesized using evaporation-induced self-assembly (EISA) with Pluronic P123 as templating surfactant on a chemically neutral modified substrate. The silica films with similar orthogonal aligned mesostructured but …


The Development Of Temperature And Ph Responsive Hydrogels And Membranes For Selective Sorption Of Perfluoroorganics And Nanoparticle Integrated Catalytic Degradation Of Pcb, Anthony Saad Jan 2020

The Development Of Temperature And Ph Responsive Hydrogels And Membranes For Selective Sorption Of Perfluoroorganics And Nanoparticle Integrated Catalytic Degradation Of Pcb, Anthony Saad

Theses and Dissertations--Chemical and Materials Engineering

The functionalization and use of responsive and catalytic polymeric membranes and materials were explored for contaminant capture and degradation. While membranes have a wide variety of uses across multiple industries, the inclusion of materials that are temperature and pH responsive in the membrane pore domain yields a wide range of applications and possibilities for water treatment. Temperature and pH responsive polymers, as well as controlled nanostructured materials, were synthesized in membrane pores for advanced adsorption-desorption and catalytic treatment of emerging organic contaminants in water. In this study, supported by the NIEHS, poly-N-isopropylacrylamide (PNIPAm) was used as a model thermo-responsive polymer, …


Effects Of Hole Transporting Layers And Surface Ligands On Interface Energetics And Photovoltaic Performance Of Methylammonium Lead Iodide Perovskites, So Min Park Jan 2020

Effects Of Hole Transporting Layers And Surface Ligands On Interface Energetics And Photovoltaic Performance Of Methylammonium Lead Iodide Perovskites, So Min Park

Theses and Dissertations--Chemical and Materials Engineering

Organic metal halide perovskites are promising materials for various optoelectronic device applications such as light emitting diodes (LED) and photovoltaic (PV) cells. Perovskite solar cells (PSCs) have shown dramatic increases in power conversion efficiency over the previous ten years, far exceeding the rate of improvement of all other PV technologies. PSCs have attracted significant attention due to their strong absorbance throughout the visible region, high charge carrier mobilities, color tunability, and ability to make ultralight weight devices. However, organic metal halide perovskites still face several challenges. For example, their environmental stability issue must be overcome to enable widespread commercialization. Meeting …


Algorithms For Achieving Fault-Tolerance And Ensuring Security In Cloud Computing Systems, Md. Tariqul Islam Jan 2020

Algorithms For Achieving Fault-Tolerance And Ensuring Security In Cloud Computing Systems, Md. Tariqul Islam

Theses and Dissertations--Computer Science

Security and fault tolerance are the two major areas in cloud computing systems that need careful attention for its widespread deployment. Unlike supercomputers, cloud clusters are mostly built on low cost, unreliable, commodity hardware. Therefore, large-scale cloud systems often suffer from performance degradation, service outages, and sometimes node and application failures. On the other hand, the multi-tenant shared architecture, dynamism, heterogeneity, and openness of cloud computing make it susceptible to various security threats and vulnerabilities. In this dissertation, we analyze these problems and propose algorithms for achieving fault tolerance and ensuring security in cloud computing systems.

First, we perform a …


Investigation Into Mine Pillar Design And Global Stability Using The Ground Reaction Curve Concept, Ravi Chandan Ray Jan 2020

Investigation Into Mine Pillar Design And Global Stability Using The Ground Reaction Curve Concept, Ravi Chandan Ray

Theses and Dissertations--Mining Engineering

Pillars form an important support structure in any underground mine. A bulk of the overburden load is borne by the mine pillars. Thus, the strength of pillars has been a subject of detailed research over more than 6 decades. This work has led to the development of largely empirical pillar design formulations that have reduced the risk of pillar failures and mine collapse. Current research, however, has drawn attention to the fact that some of the assumptions used in the development of conventional pillar design methodologies are not always valid. Conventional pillar design methodology assumes that the pillars carry the …


Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel Jan 2020

Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel

Theses and Dissertations--Mechanical Engineering

Atmospheric entry occurs at very high speeds which produces high temperature around the vehicle. Entry vehicles are thus equipped with Thermal Protection Systems which are usually made of ablative materials. This dissertation presents a new solver that models the atmospheric entry environment and the thermal protection systems. In this approach, both the external flow and the porous heat shield are solved using the same computational domain. The new solver uses the Volume Averaged Navier-Stokes Equations adapted for hypersonic non-equilibrium flow, and is thus valid for both domains. The code is verified using analytical problems, set of benchmarks and also a …


Effect Of Silica Nanoconfinement Of Lipid Bilayers On Its Phase Transition And On The Colloidal Stability Of Silica Nanoparticles, Aniruddha Atul Shirodkar Jan 2020

Effect Of Silica Nanoconfinement Of Lipid Bilayers On Its Phase Transition And On The Colloidal Stability Of Silica Nanoparticles, Aniruddha Atul Shirodkar

Theses and Dissertations--Chemical and Materials Engineering

In this work, we incorporated 4-(N-Boc-aminometyl) phenylboronic acid (BA), at different concentrations, into 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) bilayers confined within nanopores of two different mean pore diameters of 7.4 nm and 11.7 nm of micron sized silica particles. The confinement of DPPC into nanopores resulted in the depression in the main phase transition temperatures compared to the liposomal system. The addition of BA was found to induce disruptions in the acyl chains of the lipid molecules at all concentrations of the solute. The lipid bilayer cooperativity was found to be higher in the confined systems compared to the liposomal systems despite …


Numerical And Experimental Studies Of Blocked Force Determination On An Offset Interface For Plate And Shell Structures And Duct Acoustic Systems, Keyu Chen Jan 2020

Numerical And Experimental Studies Of Blocked Force Determination On An Offset Interface For Plate And Shell Structures And Duct Acoustic Systems, Keyu Chen

Theses and Dissertations--Mechanical Engineering

Blocked force determination is an alternative to the more routine method of inverse force determination using classical transfer path analysis. One advantage of determining blocked forces is that there is no need for the source to be detached or isolated from the system. Another advantage is that calculated blocked forces are appropriate when modifications are made on the receiver side of the interface. This insures that the blocked forces are suitable for utilization in analysis models where receiver system modifications are considered. Difficulties in using the approach arise when interface locations are difficult to instrument. This thesis demonstrates that blocked …


Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel Jan 2020

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel

Theses and Dissertations--Mechanical Engineering

Ionic liquids, possessing improved properties in many areas of technical application, are excellent candidates as components in development of next-generation technology, including ultra-high energy batteries. If they are thus applied, however, extensive interfacial analysis of any selected ionic configuration will likely be required. Molecular dynamics (MD) provides an advantageous route by which this may be accomplished, but can fall short in observing some phenomena only present at larger time/length scales than it can simulate. Often times this is approached by coarse-graining (CG), with which scope of simulation can be significantly increased. However, coarse-grained MD systems are generally known to produce …


Stress Generation In Ni50.3Ti29.7Hf20 Shape Memory Alloys, Utsav Shah Jan 2020

Stress Generation In Ni50.3Ti29.7Hf20 Shape Memory Alloys, Utsav Shah

Theses and Dissertations--Mechanical Engineering

Shape memory alloys such as NiTiHf and NiTi have the ability to generate large recovery stresses when they are constrained after pre-straining and then heated above their Austenite Finish Temperature (Af). In this work Ni49.9Ti50.1 (at.%), the most well-known SMA with impressive shape memory properties but limited temperature range and Ni50.3Ti29.7Hf20, a promising high temperature shape memory alloy, were characterized to reveal their stress generation capabilities. The effects of pre-straining on stress generation were investigated via martensite reorientation method of NiTi and NiTiHf alloys by loading the samples till …


Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown Jan 2020

Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown

Theses and Dissertations--Mechanical Engineering

Finish machining is an essential manufacturing process that is used to enhance the mechanical characteristics of critical components. The deformation that occurs at the tool and workpiece interface in finish machining significantly affects a host of component properties, commonly referred to as “surface integrity” properties. Surface roughness is a machining deformation-affected characteristic that is of high relevance in contemporary manufacturing. However, over recent decades it has been made clear that the material properties of the deformed surface layers are relevant to component performance as well. Predicting the overall surface quality of a machined component is of great relevance to the …


Capillary Flow Of Liquid Aluminum Alloy In Wetting And Wetting/Non-Wetting Systems, Yangyang Wu Jan 2020

Capillary Flow Of Liquid Aluminum Alloy In Wetting And Wetting/Non-Wetting Systems, Yangyang Wu

Theses and Dissertations--Mechanical Engineering

In this dissertation, the capillary flow of liquid aluminum alloy in both wetting and wetting/non-wetting systems is investigated.

The impact of gravity and surface topography on the capillary flow has been studied in a wetting/non-wetting assembly (an AA3003/Al2O3 wedge-tee configuration). The research includes (i) kinetics of liquid Al-Si-KxAlyFz alloy triple line movements and dynamic macro advancing and receding contact angles and (ii) free surface profiles of the molten alloy driven by surface tension and impacted by gravity. A trade-off between the surface tension and gravity force has been found by calculating the …


Flame Stabilization Of A Premixed Jet In Vitiated Coflow, Tyler Owens Jan 2020

Flame Stabilization Of A Premixed Jet In Vitiated Coflow, Tyler Owens

Theses and Dissertations--Mechanical Engineering

Premixed staged combustion in gas turbine engines can reduce emissions by lowering peak flame temperatures but can also lead to different stability characteristics when compared to traditional combustors. High pressure ratio and subsequently high temperatures can lead to conditions suitable for both autoignition and premixed flame propagation in an environment where spatial fuel/air variations are present.

An experimental facility which issues a premixed jet into a coflowing vitiated mixture was studied to examine the stability behavior, resulting in a lifted flame. The effective ignition delay observed flame was much greater than homogeneous ignition delay calculations for the same conditions. It …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …


Fabrication And Characterization Of Nickel Plated Micro-Resonators For Noncommutative Orientation Control In Microrobots, Marc Manheim Jan 2020

Fabrication And Characterization Of Nickel Plated Micro-Resonators For Noncommutative Orientation Control In Microrobots, Marc Manheim

Theses and Dissertations--Mechanical Engineering

This thesis describes a procedure for fabricating arrays of microstructures out of SU-8 photoresist and nickel, which was developed with the goal of yielding microrobots capable of 1D rotation byway of magnetically-induced beam vibration that could be used for non-commutative orientation control. Several multi-layer geometries were designed, fabricated, tested and refined. In this process, micro-adhesion of multiple SU-8 layers was also studied. A method for depositing nickel via electroless plating was also developed, tested and characterized. While no microrobots were shown to produce rotation, the final results included beams that were capable of magnetically-induced vibration when subjected to an AC …


Numerical Analyses And Integration Of Split Lot Sizing Using Lean Benchmark Model For Small Lot Manufacturing In High Mix Low Volume Production, Omkar Bhosale Jan 2020

Numerical Analyses And Integration Of Split Lot Sizing Using Lean Benchmark Model For Small Lot Manufacturing In High Mix Low Volume Production, Omkar Bhosale

Theses and Dissertations--Manufacturing Systems Engineering

As the global demand for automobiles has increased rapidly over the last fifty years, customers have become more particular about the characteristics of the autos they want. This change in demand, in part has pushed manufacturing to become more flexible and created a demand for alternative, more efficient processes like the High Mix Low Volume (HMLV) production of vehicles. During HMLV, manufacturers create production lot sizes and schedule to synchronize the production processes to meet customer demand on time. The demand for the automobile parts may not be uniform or parts may not be consumed by the customer immediately, Due …


Soil Bulk Density Effects On Runoff Estimation, Colton Pugh Jan 2020

Soil Bulk Density Effects On Runoff Estimation, Colton Pugh

Theses and Dissertations--Biosystems and Agricultural Engineering

Urbanization has long been a major factor in the hydrology of surrounding areas. Engineers are commonly tasked with mitigating the extra runoff that urbanization brings with it. The NRCS Curve Number (CN) method is a commonly-used approach to predicting the amount of runoff that will be experienced from a given area. However, this method is known to be highly simplified in model of the processes involved. This study focused on determining the relationships between soil bulk density, simulated rainfall events, hydrologic soil group (HSG) and runoff estimation (specifically via the NRCS CN method). It was determined that soil bulk density …


Characterizing And Predicting The Antimicrobial Properties Of Lignin Derivatives, Ryan Kalinoski Jan 2020

Characterizing And Predicting The Antimicrobial Properties Of Lignin Derivatives, Ryan Kalinoski

Theses and Dissertations--Biosystems and Agricultural Engineering

Due to the overuse of antibiotics in our society, there has been a steady rise in highly antimicrobial-resistant bacteria in the last decade. This has created a renewed interest in natural phenolic compounds for antimicrobial discovery amongst the scientific community. To this end, lignin is the most abundant naturally occurring phenolic polymer on earth and has already been known to have antimicrobial properties due to its polyphenolic structure. In addition, lignin is considered a major waste product for lignocellulosic biorefineries, and its valorization into value-added products will generate extra profit for a biorefinery, making biofuels less expensive, increasing their marketability …


Disassemble/Analyze/Assemble: How A Hands-On Engineering Project Affects High School Girls' Science/Engineering Self-Efficacy, Interest And Career Considerations, Jennifer Corbett Ferguson Jan 2020

Disassemble/Analyze/Assemble: How A Hands-On Engineering Project Affects High School Girls' Science/Engineering Self-Efficacy, Interest And Career Considerations, Jennifer Corbett Ferguson

Theses and Dissertations--Education Sciences

Engineering education as part of the K-12 curriculum can be an effective instructional tool and its benefits include improved science and mathematical achievement as well as an increased interest and understanding of the engineering field, especially for female students. However, there is a serious lack of research-based engineering curriculum being used at the middle and high school levels and lessons most often rely on building or construction competitions. Over the past decade or two, many well-known colleges have implemented a reverse engineering instructional unit known as Disassemble/Analyze/Assemble projects within their introductory engineering courses. These units have been shown to improve …


A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi Jan 2020

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi

Theses and Dissertations--Physics and Astronomy

Applications of organic electronics have increased significantly over the past two decades. Organic semiconductors (OSC) can be used in mechanically flexible devices with potentially lower cost of fabrication than their inorganic counterparts, yet in many cases organic semiconductor-based devices suffer from lower performance and stability. Investigating the doping mechanism, charge transport, and charge transfer in such materials will allow us to address the parameters that limit performance and potentially resolve them. In this dissertation, organic materials are used in three different device structures to investigate charge transport and charge transfer. Chemically doped π-conjugated polymers are promising materials to be used …


Quantifying Nitrogen Fate In Karst Agroecosystem Streams Of Central Kentucky: Development And Application Of Numerical Modeling And Insight From High-Resolution Sensors, Nolan Lewis Bunnell Jan 2020

Quantifying Nitrogen Fate In Karst Agroecosystem Streams Of Central Kentucky: Development And Application Of Numerical Modeling And Insight From High-Resolution Sensors, Nolan Lewis Bunnell

Theses and Dissertations--Biosystems and Agricultural Engineering

In-stream fate of nutrients in karst agroecosystems remains poorly understood, despite the known impact of karst on water resources at local to global scales. In the Inner-Bluegrass region of central Kentucky, heterogeneity of karst maturity, flow pathways, and nutrient sources adds to the complexity of quantifying nutrient dynamics, thus requiring novel monitoring and modeling approaches. The significance of these streams is recognized given spring/surface water confluences have been identified as hotspots for biogeochemical transformations. In slow-moving streams high in dissolved inorganic nutrients (particularly dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP)), benthic and floating aquatic macrophytes are recognized to …


An Assessment Of 2d And 3d Spatial Accuracy Of Photogrammetry For Livestock Health Monitoring, Luis Felipe Pampolini Jan 2020

An Assessment Of 2d And 3d Spatial Accuracy Of Photogrammetry For Livestock Health Monitoring, Luis Felipe Pampolini

Theses and Dissertations--Biosystems and Agricultural Engineering

The overall objective of this study was to evaluate the use of consumer-grade unmanned aircraft systems for image-based remote sensing in agriculture with application towards livestock health monitoring. A two-dimensional spatial error experiment was conducted to quantify the spatial accuracy of georeferenced orthomosaic imagery collected using a drone and processed with photogrammetry software. Treatment variables included altitude above ground level and image data type (visible and multispectral). The results from the ANOVA test indicated that there were significant differences between data types, but no significant differences between altitudes. The experiment was then expanded to a three-dimensional study where two life-size …


Fourier Transform Infrared Spectroscopy (As A Rapid Method) Coupled With Machine Learning Approaches For Detection And Quantification Of Gluten Contaminations In Grain-Based Foods, Abuchi Godswill Okeke Jan 2020

Fourier Transform Infrared Spectroscopy (As A Rapid Method) Coupled With Machine Learning Approaches For Detection And Quantification Of Gluten Contaminations In Grain-Based Foods, Abuchi Godswill Okeke

Theses and Dissertations--Biosystems and Agricultural Engineering

Cross-contamination between food grains during harvesting, transportation, and/or food processing is still a major issue in the food industry. Due to cross-contact with gluten-rich grains (wheat, barley, and rye grains), gluten can get into food that’s naturally free from gluten and thus may not be safe for consumption for people susceptible to gluten-related disorders such as celiac disease, wheat allergy, gluten intolerance or sensitivity. The conventional method of gluten detection is cumbersome, time-consuming, and requires well-trained personnel. Therefore, there is a need for a rapid and equally effective technique to authenticate gluten contamination in foods. This research work explored the …


Characterization And Enzyme Engineering Of Laccases Towards Lignin Valorization In Aqueous Ionic Liquids, Joseph Stevens Jan 2020

Characterization And Enzyme Engineering Of Laccases Towards Lignin Valorization In Aqueous Ionic Liquids, Joseph Stevens

Theses and Dissertations--Biosystems and Agricultural Engineering

Lignin is one of the most abundant polymers found in nature, making up 15 – 40% of the weight of terrestrial biomass. Due to the structural and monomeric heterogeneity of lignin, it is recalcitrant thermochemical and biological valorization methods. Converting lignin to value-added products via sustainable and cost-effective pathways will reduce waste and add value to future cellulosic biorefineries. Biological methods for lignin valorization (e.g. lignin degrading enzymes or microbes) is limited by low lignin solubility in biocompatible solvents, resulting in low product yield. Recent reports on biocatalysts for lignin valorization have focused on the lignolytic multicopper oxidase laccase, …


Effects Of Watershed Disturbances And River-Tributary Confluences On Sedimentation Dynamics In The Upper Ohio River Basin, Ciara Pickering Jan 2020

Effects Of Watershed Disturbances And River-Tributary Confluences On Sedimentation Dynamics In The Upper Ohio River Basin, Ciara Pickering

Theses and Dissertations--Biosystems and Agricultural Engineering

Harmful algal blooms (HABs) are of increasing concern in the Ohio River Basin. Fine sediment dynamics in riverine environments are increasingly recognized to play important roles in proliferation and toxicity of Microcystis blooms. Further, the fate of sediment at confluences of tributaries and the main river system are important zones for sediment retention and transient storage. The objective of this study was to improve understanding of watershed sediment loading dynamics and backwater inundation influencing sedimentation within confluence watersheds. The study site is the Fourpole Creek watershed in Huntington, WV which is a disturbed forested watershed impacted by a backwater confluence …


Physicochemical Characterization, Structural Determination, And Molecular Dynamic Modeling Of Proso Millet Proteins For Enhanced Food Functionality, Felix Akharume Jan 2020

Physicochemical Characterization, Structural Determination, And Molecular Dynamic Modeling Of Proso Millet Proteins For Enhanced Food Functionality, Felix Akharume

Theses and Dissertations--Biosystems and Agricultural Engineering

More than one-third of Americans today incorporate plant-based protein into their diet and about 40% believed that plant-based protein is healthier than animal protein, especially Millennials. The increasing global demand for plant-based proteins driven by the high cost of animal proteins, consumers’ desire for lean protein, vegetarianism, and the need for more sustainable green protein products have necessitated research into alternate emerging and underutilized sources of protein to complement or supplement the major plant protein in the market- soy, pea, and gluten. Therefore, this dissertation is focused on the valorization of the proteins in proso millet. Specifically, this work focused …


Numerical Approximation Of The Ground Reaction And Support Reaction Curves For Underground Limestone Mines, Jesus Castillo Gomez Jan 2020

Numerical Approximation Of The Ground Reaction And Support Reaction Curves For Underground Limestone Mines, Jesus Castillo Gomez

Theses and Dissertations--Mining Engineering

Pillar stability has been a matter of study for the last 70 years. The determination of pillar strength had taken different solutions and approaches over that time. This research has led to numerous empirical formulations that have reduced the number of pillar failures worldwide. However, new numerical approaches are being studied. In the last 20 years, the Ground Reaction Curve concept has been examined as a way of understanding the convergence of the rock-mass. Although the Ground Reaction Curve was first introduced in the civil tunneling industry, several authors have introduced the Ground Reaction Curve concept as an approach for …