Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston Jan 2023

Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston

Williams Honors College, Honors Research Projects

The motivation and objectives of this project is to examine the mechanisms of intergranular corrosion (IGC) and pitting corrosion of sensitized AA5083. In this regard, different characterization techniques were used, including optical analysis of microstructure, cyclic potentiodynamic polarization with Tafel fitting, electrochemical impedance spectroscopy with electrical equivalent circuit (EEC) fitting, and potentiostatic current transient monitoring. The transition from IGC to pitting corrosion occurs when the grain boundaries become saturated with the β-phase (Mg2Al3). It was found that AA5083 becomes more vulnerable to pitting corrosion as the degree of sensitization increases.


Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci Jan 2021

Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci

Williams Honors College, Honors Research Projects

Identifying materials to efficiently facilitate the oxygen evolution reaction (OER) is key to advancing water electrolysis, an essential technology in the pathway towards a sustainable energy future. Here, we explore cold-plasma treatment as a facile method to enhance the activity of NiP nanoparticles supported on activated carbon. NiP nanoparticles were synthesized on an activated carbon support using a solid-state method and were then treated with argon, oxygen, and hydrogen plasmas for extended times. In all cases, plasma treatment reduced the number of active sites on the support. OER activity was evaluated by testing the materials in alkaline conditions. The activities …


Chronoamperometry Analysis Of Sweat Sensor Technology, Evan Fritz Jan 2019

Chronoamperometry Analysis Of Sweat Sensor Technology, Evan Fritz

Williams Honors College, Honors Research Projects

Due to the demand for in-situ electrolyte sodium sensors, prototype sensors have been produced to create a product for athletes and marathoners to monitor hydration levels. These senors address a desire in the marketplace for athletic monitoring for overall athlete wellness and performance. Sweat sensor samples were created using Multi-walled Carbon Nanotubes functionalized on a Nylon-6 fiber mat using cyclo-oligomeric Calixarene. This production process produces sensors capable of detecting sodium ion concentration present in human sweat in presence of an electric current. Chronoamperometry analysis is used in this manner to determine the functionality of the sensors. Much of the research …


Vanadium Redox Flow Batteries: Design And Experimentation, Matthew George Jan 2018

Vanadium Redox Flow Batteries: Design And Experimentation, Matthew George

Williams Honors College, Honors Research Projects

Vanadium flow batteries (VFB) are a type of battery that has potential as a grid-scale energy storage solution. An original design for a lab-scale VFB is presented herein, along with a procedure for electrolyte preparation from V2O5 using oxalic acid. The flow cell is constructed from Delrin, Teflon, Kynar, Santoprene, Nafion, graphite plate, and porous carbon. Two diaphragm pumps along with polyethylene, PVC, and Santoprene tubing are used. The active area is 58 cm2. The battery was charged using a DC power supply at a constant current of 4 A with corresponding initial voltage of …