Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Electrical and Computer Engineering

Thin films

Jason R. Hattrick-Simpers

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers Mar 2015

Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Mar 2015

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Jason R. Hattrick-Simpers

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …