Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Synergistic Effect Of Shrinkage Mitigating Materials On Rheological Properties Of Flowable And Thixotropic Cement Paste, Kamran Aghaee, Ricarda Sposito, Kamal Khayat Oct 2022

Synergistic Effect Of Shrinkage Mitigating Materials On Rheological Properties Of Flowable And Thixotropic Cement Paste, Kamran Aghaee, Ricarda Sposito, Kamal Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This study investigates the effect of individual and combined additions of CaO-based expansive agent (EA), shrinkage reducing admixture (SRA), and super absorbent polymer (SAP) on key characteristics of flowable cement paste mixtures proportioned with a water-to-cement ratio of 0.40. Of special interest is the effectiveness of these admixtures to mitigate shrinkage of cementitious materials for 3D printing. Static and dynamic yield stress, plastic and apparent viscosities, and thixotropy were evaluated at 20-min intervals up to 90 min. Compressive strength development and autogenous shrinkage were also determined. A factorial design approach was developed to evaluate the synergetic effects of the shrinkage …


Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant Sep 2022

Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant

Materials Science and Engineering Faculty Research & Creative Works

Extrusion-based 3D printing with rapidly hardening polymeric materials is capable of building almost any conceivable structure. However, concrete, one of the most widely used materials for large-scale structural components, is generally based on inorganic binder materials like Portland cement. Unlike polymeric materials, a lack of precise control of the extent and rate of solidification of cement-based suspensions is a major issue that affects the ability to 3D-print geometrically complex structures. Here, we demonstrate a novel method for controllable-rapid solidification of concentrated mineral suspensions that contain a polymer binder system based on epoxy and thiol precursors as well as one or …


Process Evaluation And Kinetic Analysis Of 3d-Printed Monoliths Comprised Of Cao And Cr/H-Zsm-5 In Combined Co2 Capture-C2h6 Oxidative Dehydrogenation To C2h4, Khaled Baamran, Shane Lawson, Ali A. Rownaghi, Fateme Rezaei May 2022

Process Evaluation And Kinetic Analysis Of 3d-Printed Monoliths Comprised Of Cao And Cr/H-Zsm-5 In Combined Co2 Capture-C2h6 Oxidative Dehydrogenation To C2h4, Khaled Baamran, Shane Lawson, Ali A. Rownaghi, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this study, dual-function materials (DFMs) comprised of CaO and Cr/H-ZSM-5 were formulated in 3D-printed monolithic structures and investigated in a combined process for capture and utilization of CO2 in oxidative dehydrogenation of C2H6 to C2H4 (CO2-ODHE). Various formulation strategies were employed to fabricate these DFM structures. Two bed designs were considered: i) a layered-bed in which adsorbent (CaO) and catalyst were printed separately and stacked on top of each other, and ii) a single-layer bed where the adsorbent-catalyst materials were 3D-printed into a singular monolith and loaded into the bed …


Integrated Direct Air Capture And Oxidative Dehydrogenation Of Propane With Co2 At Isothermal Conditions, Shane Lawson, Khaled Baamran, Kyle Newport, Turki Alghamadi, Gary Jacobs, Fateme Rezaei, Ali A. Rownaghi Apr 2022

Integrated Direct Air Capture And Oxidative Dehydrogenation Of Propane With Co2 At Isothermal Conditions, Shane Lawson, Khaled Baamran, Kyle Newport, Turki Alghamadi, Gary Jacobs, Fateme Rezaei, Ali A. Rownaghi

Chemical and Biochemical Engineering Faculty Research & Creative Works

Developing routes of utilizing CO2 emissions is important for long-term environmental preservation, as storing such emissions underground will eventually become unsustainable. One way of utilizing CO2 emissions is as a light-oxidant feedstock for oxidative dehydrogenation of propane (ODHP) to propylene. However, the adsorption and reaction steps typically occur at widely different temperatures, meaning that the thermal gradients – and by extension process energy requirements – are often unreasonably high. In recent years, dual-functional materials (DFMs) – i.e., materials comprised of a high temperature adsorbent phase alongside a heterogeneous catalyst – have been employed for combined CO2 adsorption …